Speaker: Katharina Probst
Katharina Probst leads engineering teams at Netflix. She is responsible for the Netflix API, which helps bring Netflix streaming to millions of people around the world. Prior to joining Netflix, she was in the cloud computing team at Google, where she saw cloud computing from the provider side. Her interests include scalable, distributed systems, APIs, cloud computing, and building effective and successful teams. She also holds a PhD in Computer Science from Carnegie Mellon University.
Find Katharina Probst at
Talk: Binary Protocol AMA (Ask Me Anything)
Other talks from track Ask Me Anything (AMA)


Tracks
Monday, 26 June
-
Microservices: Patterns & Practices
Practical experiences and lessons with Microservices.
-
Java - Propelling the Ecosystem Forward
Lessons from Java 8, prepping for Java 9, and looking ahead at Java 10. Innovators in Java.
-
High Velocity Dev Teams
Working Smarter as a team. Improving value delivery of engineers. Lean and Agile principles.
-
Modern Browser-Based Apps
Reactive, cross platform, progressive - webapp tech today.
-
Innovations in Fintech
Technology, tools and techniques supporting modern financial services.
Tuesday, 27 June
-
Architectures You've Always Wondered About
Case studies from the most relevant names in software.
-
Developer Experience: Level up Your Engineering Effectiveness
Trends, tools and projects that we're using to maximally empower your developers.
-
Chaos & Resilience
Failures, edge cases and how we're embracing them.
-
Stream Processing at Large
Rapidly moving data at scale.
-
Building Security Infrastructure
How our industry is being attacked and what you can do about it.
Wednesday, 28 June
-
Next Gen APIs: Designs, Protocols, and Evolution
Practical deep-dives into public and internal API design, tooling and techniques for evolving them, and binary and graph-based protocols.
-
Immutable Infrastructures: Orchestration, Serverless, and More
What's next in infrastructure. How cloud function like lambda are making their way into production.
-
Machine Learning 2.0
Machine Learning 2.0, Deep Learning & Deep Learning Datasets.
-
Modern CS in the Real World
Applied, practical, & real-world dive into industry adoption of modern CS.
-
Optimizing Yourself
Maximizing your impact as an engineer, as a leader, and as a person.
-
Ask Me Anything (AMA)