
Will Norman

Lessons Learned Building and Operating a
Serverless Data Pipeline

Introduction

● Will Norman - Director of Engineering @ Intent
○ FinTech and AdTech background

● Intent
○ Data Science company for commerce sites
○ Primary application is an ad network for travel sites

● MOD owns data

● 4 Engineers

● 1 Product Manager

MOD Squad

What we’ll be covering

● What is Serverless?

● Intent Data Platform

● Lessons Learned

● More about managed services than lack servers

● Not just FaaS

● Scale on demand / pay for only what you use

● Empowers developers to own their platform

What is Serverless?

● Active MQ

● Log Processors
○ Java applications

○ Kept state locally

○ Cron scheduled tasks to roll files to S3

○ Ran on dedicated EC2 instances

● S3

Intent Data Platform [Old World]

● Kinesis

● Lambda

● Kinesis Firehose

● SNS

● AWS Batch

● S3

Intent Data Platform [New World]

● Streaming Data Consumers

● Spark Jobs / Aggregations -> Redshift

● Snowflake Loader -> Snowflake

● Parqour -> Athena
○ EMR based jobs that convert AVRO -> Parquet

Data Consumers

● Fewer production issues

● Separation of concerns

● Horizontally scalable

● Removed a lot of undifferentiated heavy lifting

Worth the move?

Lessons Learned

1. Total Cost of Ownership

2. Think about data formats upfront

3. Design for Failure

4. Design for Scalability

5. Not NoOps just DiffOps

6. Build Components

7. CI / CD Strategies

8. Leverage the Community

● On demand costs

● Hidden Costs / Tag All The Things!

● Enterprise Support

● Value of being able to focus on core business problems

Total Cost of Ownership

● What does the ecosystem support?

● Schema vs Schemaless (eg AVRO vs JSON)

● Data validation & Data evolution

● Data at rest vs data in flight

● JSON / CSV / AVRO / Parquet?

Think about data formats up front

 record DataWrapper {
 string dataType;
 long schemaFingerprint;
 bytes data;
 }

● Publish Schema in JSON format to S3
● Consumers lookup schemas, and calculate fingerprints

Schema Registry

● System Guarantees?

● Idempotency

● Over process (data lookbacks)

● Dead Letter Queues

Design for failure

● Decouple from non-scalable systems

● Don’t run lambdas in VPC if you can help it

● Partition data at rest

● Shard events based on GUID / random id if ordering isn’t

necessary

● Think about fan out patterns

Design for Scalability

● Application problem or service problem

● Platform Limits

● Logs

● Metrics

● Dashboards

● Alerts

Not NoOps, just DiffOps

Some things remain the same

● Help to reason about different parts of the system

● Make it easy to do the right thing

● Easier to extend

● Infrastructure as Code

Build Components

module "conversion_event_processor" {

 source = "../modules/event_processor"

 data_type = "conversion"

 data_source = "ad_server"

 processor_lambda_handler = "com.intentmedia.data.stream.ConversionLambda::handler"

 environment = "${var.environment}"

 firehose_lambda_handler = "com.intentmedia.data.stream.ConversionFirehose::handler"

 processor_lambda_reserved_concurrent_executions = 3

 firehose_lambda_reserved_concurrent_executions = 2

}

● Step backwards from being able to run stack locally

● Unit tests for business logic

● Integration Tests / End to End tests to ensure that

everything is working as expected

● Use different AWS accounts to segregate staging and

production

CI / CD

● Slack
○ Serverless Forum
○ og-aws

● Blogs
○ Symphonia https://www.symphonia.io/
○ Charity Majors https://charity.wtf/
○ Jeremy Daly https://www.jeremydaly.com/

● Twitter
● Meetup Events / Conferences

Leverage the Community

https://www.symphonia.io/
https://charity.wtf/
https://www.jeremydaly.com/

Questions?

Will Norman
will.norman@intent.com

We’re hiring!

mailto:will.norman@intent.com

