Securing A Multitenant Kubernetes Cluster

Kirsten Newcomer
Senior Principal Product Manager, OpenShift
CONTAINERS ARE THE NEW WAY TO DELIVER APPLICATIONS

VMs virtualize the hardware

Containers virtualize the process

CONTAINER DEPLOYMENTS ARE INCREASING
KUBERNETES IS THE NEW WAY OF AUTOMATING APPLICATION RESILIENCY

- Auto scale
- Health checks
- Networking (CNI) & Routing
- Platform HA
- Application HA
“Red Hat OpenShift allows us to go to market faster. We can move microservices and applications on OpenShift in a few seconds. That’s the impact this has on our business.” -- Luis Uguina, Chief Digital Officer, Macquarie Bank

- Digital-first bank, reshaping the Australian banking market
- Rethinking their mobile customer experience.
- Using RHEL, OpenShift and JBoss Fuse
- **More than 60 business critical applications on OpenShift**

This new model is helping us hire and retain top talent.

View the [Macquarie Bank keynote](#)
“Red Hat solutions have enabled us to deliver value to our customers much faster, with improved performance and stability.”

-- KERRY PEIRSE, GENERAL MANAGER OF I.T. INFRASTRUCTURE AND OPERATIONS, CATHAY PACIFIC AIRWAYS LIMITED

- A leading, international airline
- Goal: transform legacy infrastructure into a modern hybrid cloud architecture.
- Forming the bridge to the public cloud is Red Hat OpenShift Container Platform, which supports more than 50 consumer-facing applications.
- Throughput for application deployment has been increased by a factor of 10.
- Reduced infrastructure footprint in terms of hardware, maintenance, and operations cost.
- Lowered the total cost of ownership (TCO) of production environments

Increased application development throughput by a factor of 10 from 20 to 200 changes a day

AT ENTERPRISE SCALE, THE CLUSTER IS NOT THE SECURITY BOUNDARY

How do we ensure application security and process isolation on a Kubernetes cluster running complex, diverse workloads from multiple teams?

When should you consider single tenant clusters vs. multi-tenant?

How do you help your auditors understand this new world?
SECURING A MULTI-TENANT CLUSTER
Requires security throughout the stack and the IT lifecycle

Identify security requirements & governance models

Built-in from the start; not bolted-on

Deploy to trusted platforms with enhanced security capabilities

Revise, update, remediate as the landscape changes

Automate systems for security & compliance

Security policy, process & procedures
ENTERPRISE KUBERNETES MULTI-TENANCY
Layers and Lifecycle

1. Host OS
2. Container platform
3. Network
4. Containerized applications
1. HOST OS CONTAINER MULTI-TENANCY

Container Security starts with Linux Security

- Security in the host OS applies to the container
- SELINUX and Kernel Namespaces are the one-two punch no one can beat
- Protects not only the host, but containers from each other
- A container optimized OS provides a minimized attack surface
- Look for certifications such as Common Criteria cert with the container framework
CONTAINER HOST VISION

An Ideal Container Host would be

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>RHEL CoreOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal</td>
<td>Only what’s needed to run containers</td>
</tr>
<tr>
<td>Secure</td>
<td>Read-only & locked down</td>
</tr>
<tr>
<td>Immutable</td>
<td>Immutable image-based deployments & updates</td>
</tr>
<tr>
<td>Always up-to-date</td>
<td>OS updates are automated and transparent</td>
</tr>
<tr>
<td>Updates never break my apps</td>
<td>Isolates all applications as containers</td>
</tr>
<tr>
<td>Updates never break my cluster</td>
<td>OS components are compatible with the cluster</td>
</tr>
<tr>
<td>Supported on my infra of choice</td>
<td>Has a large ecosystem of supported solutions</td>
</tr>
<tr>
<td>Simple to configure</td>
<td>Installer generated configuration</td>
</tr>
<tr>
<td>Effortless to manage</td>
<td>Managed by Kubernetes Operators</td>
</tr>
</tbody>
</table>

CONTAINER HOST VISION
2. THE CONTAINER PLATFORM

Necessary Multi-tenancy Features

- Host & Runtime security
- Identity and Access Management
- Project namespaces
- Integrated & extensible secrets management
- Log management & audit
USE HARDENING GUIDES & TOOLS

CIS Kubernetes Benchmarks

OpenShift Hardening Guide

Open source tools

- docker-bench supports versions 1.13 and 17.06
- kube-bench
RUNTIME SECURITY POLICIES
(Pod Security Policies / Security Context Constraints)

<table>
<thead>
<tr>
<th>Command</th>
<th>Output</th>
</tr>
</thead>
</table>
| $ oc describe scc restricted | Name: restricted
Priority: <none>
Access: <none>
Users: <none>
Groups: system:authenticated
Settings:
 Allow Privileged: false
 Default Add Capabilities: <none>
 Required Drop Capabilities: KILL,MKNOD,SYS_CHROOT,SETUID,SETGID
 Allowed Capabilities: <none>
 Allowed Seccomp Profiles: <none>
 Allowed Volume Types: configMap,downwardAPI,emptyDir,persistentVolumeClaim,projected
 Allow Host Network: false
 Allow Host Ports: false
 Allow Host PID: false
 Allow Host IPC: false
 Read Only Root Filesystem: false
 Run As User Strategy: MustRunAsRange |
Users are managed with outside **identity providers** such as
- OpenID Connect
- LDAP
- GitHub, GitHub Enterprise
- GitLab
- Google

API authentication strategies include
- X.509 client certificates
- Bearer tokens
- Authenticating proxy
- HTTP basic auth

For example, OpenShift includes an OAuth server, which does three things:
- Identifies the person requesting a token, using a configured identity provider
- Determines a mapping from that identity to an OpenShift user
- Issues an OAuth access token which authenticates that user to the API

[Managing Users and Groups in OpenShift](#)
[Configuring Identity Providers](#)
KUBERNETES NAMESPACES ISOLATE APPLICATIONS across teams, groups and departments
RESTRICT ACCESS BY NEED TO KNOW

Role based authorization (RBAC) in OpenShift

- Project (namespace) scope & cluster scope available
- Matches request attributes (verb, object, etc)
- If no roles match, request is denied (deny by default)
- Admin and user-level roles are defined by default
- Custom roles are supported

For more information see: Managing RBAC in OpenShift and Using Kubernetes RBAC Authorization
SECRETS MANAGEMENT

- Store platform secrets in etcd
 - Passwords and credentials
 - SSH Keys
 - Certificates

- Store application secrets in etcd or external vault
 - NOT in a pod definition or container image

- Make secrets available as
 - Environment variables
 - Volume mounts
 - Or through Interaction with external vaults

- Encrypt the etcd datastore
For example

● EFK stack aggregates logs for hosts and applications
 ○ Elasticsearch: a search and analytics engine to store logs
 ○ Fluentd: gathers logs and sends to Elasticsearch
 ○ Kibana: A web UI for Elasticsearch.

● Access control
 ○ Cluster administrators can view all logs
 ○ Users can only view logs for their projects

● Forward logs off the cluster for retention, analysis
 ○ External elasticsearch, Splunk, etc

● Audit all user login, API and runtime events
 ○ Central audit policy configuration
3. NETWORK MULTI-TENANCY
Fine Grained Control with Network Policy

Example Policies

- Allow all traffic inside the project
- Allow traffic from green to gray
- Allow traffic to purple on 8080

```yaml
apiVersion: extensions/v1beta1
kind: NetworkPolicy
metadata:
  name: allow-to-purple-on-8080
spec:
  podSelector:
    matchLabels:
      color: purple
  ingress:
  - ports:
    - protocol: tcp
      port: 8080
```

Enabled by default in OpenShift 4
Application pods run on a single cluster. Microsegmented with Network security policies.

Infra Nodes in each zone run Ingress and Egress pods for specific zones. Egress firewall used to limit external addresses accessed.

If required, physical isolation of pods to specific nodes is possible with node-selectors. But that can reduce worker node density.

There may be cases where a single tenant cluster is preferred.
OpenShift Multus Enables Multiple Networks & New Functionality to Existing Networking

The Multus CNI “meta plugin” for Kubernetes enables one to create multiple network interfaces per pod, and assign a CNI plugin to each interface created.

1. Create pod annotation(s) to call out a list of intended network attachments...
2. ...each pointing to CNI network configurations packed inside CRD objects

For more information, see Managing Multiple Networks

1. **Create pod annotation(s) to call out a list of intended network attachments...**
2. **...each pointing to CNI network configurations packed inside CRD objects**

For more information, see **Managing Multiple Networks**
4. SECURING CONTAINERIZED APPLICATIONS

Secure and Automate the Content Lifecycle
Trust is temporal; rebuild and redeploy as needed

Track updates & simplify management with ImageStreams

Use Image Change Triggers to automatically rebuild custom images with updated (patched) external images
CI/CD MUST INCLUDE SECURITY GATES

- Integrate security testing into your build / CI process
- Use an enterprise registry with integrated vulnerability scanning
- Use automated policies to flag builds with issues
- Sign your custom container images
BUILD OPERATORS FOR YOUR APPS

Use OLM to Manage your Application Lifecycle

- Helm Chart
 - Build operators from Helm chart, without any coding
- Ansible Playbooks APBs
 - Build operators from Ansible playbooks and APBs
- Go SDK
 - Build advanced operators for full lifecycle management
- Containerized
- Cloud storage ready
- Replicated
- Backup
- Automated updates

- Containerized
- Container storage ready
- Replicated
- Backup
- Automated updates
- Enhanced observability
- Customization
- Local development
- Fully Open Source
- Any Kubernetes
- Certified on OpenShift
SECURE MICROSERVICES WITH SERVICE MESH

Generally Available in July
Secure storage by using

- SELinux access controls
- Secure mounts
- Supplemental group IDs for shared storage
LEVERAGE THE BROAD SECURITY ECOSYSTEM
Questions?

linkedin.com/company/red-hat
youtube.com/user/RedHatVideos
facebook.com/redhatinc
twitter.com/RedHat
Thank you

Red Hat is the world’s leading provider of enterprise open source software solutions.
Award-winning support, training, and consulting services make Red Hat a trusted adviser to the Fortune 500.