PID loops and the art of keeping systems stable

@colmmac

Colm MacCárthaigh

2019-06-24
Control Theory: Where the fruit is hanging so low IT IS TOUCHING THE GROUND
Control Theory 101

AWS re:Invent 2018: Close Loops & Opening Minds: How to Take Control of Systems, Big & Small ARC337
Hello 🌍

Apologies in advance for the wall of text!

I’m hosting the “Modern CS in the real world” track at a conference called QCon in NYC this June. I was wondering if you might be interested in giving a talk about PID loops and their application in building distributed systems. I loved the references to the idea in some of your previous talks - but it’d be awesome to see some of those ideas be discussed more in depth.

Let me know.

Mar 7

I’d love to and I have a lot more depth that wasn't in the re:Invent talk!
Control Theory
Prior Art

Control Theory in Container Fleet Management

while True {
 currentState = getCurrentState()
 desiredState = getDesiredState()
 makeConform(currentState, desiredState)
}

Summary
Vallery Lancay covers basic principles of observing systems, controller design, and PID controllers. In particular, she dives into container scaling controllers, using both first principles and proven designs from Kubernetes and Mesos.
Prior Art

- Feedback Control: *Introducing Control Theory to Enterprise Programmers* by Philipp K. Janert
- Designing Distributed Control Systems: *A Pattern Language Approach* by Veli-Pekka Eloranta, Johannes Koskinen, Marko Leppänen, and Ville Reijonen
Control Theory and PID loops

Comes up in the context of ...

Autoscaling and placement: Instances, Storage, Network, etc.

Fairness algorithms: TCP, Queues, Throttling

Systems stability
The Furnace
The Furnace

Measure

React
The Furnace

![Graph showing error decreasing over time.](image-url)
The Furnace
The Furnace
Autoscaling
Autoscaling

CloudWatch Monitoring Details

CPU Utilization (Percent)

Statist: Average

Time Range: Last Hour

Period: 5 Minutes

Auto Scaling group

Minimum size

Scale out as needed

Desired capacity

Maximum size

Measure

React
Autoscaling: forecasting and fancy integrals!

Any signal can be processed with Fourier Analysis to find underlying constituent frequencies.

Real-world operational systems often have strong daily, weekly, annual cycles, etc.

Holt-Winters Forecasting can simulate these cycles into the future.

Machine Learning can do even better!
Autoscaling: forecasting and fancy integrals!

1 resource selected
- Include in scaling plan
- General settings
- Dynamic scaling settings
- Predictive scaling settings

Predictive scaling mode
Determine whether to run forecasts with or without scaling. This can be changed at any time.
- Forecast and scale
- Set forecast capacity to max capacity

Max capacity behavior
Choose a rule to use when the forecast capacity is close to or exceeds the maximum capacity.
- Forecast frequency
- The frequency of the forecast update.
- Daily

Forecast granularity
The interval used for forecast and capacity calculations.
- Forecast period
- The number of days to forecast ahead.
- 2 days

Scheduled action buffer time
Add a buffer to trigger scheduled scaling actions earlier.
- 300 seconds
Placement and fairness
Control Theory 101
1

X-Ray Vision: Open Loops
launch 10 Instances
for (i = 0; i < 10; i++)
 instance[i] = ec2_launch_instance()

wait a minute
sleep(60);

Register the instances
for (i = 0; i < 10; i++)
 register_instance(instance[i]);
X-Ray Vision: Open Loops

• A surprising number of real-world systems are Open Loops

• Potential reasons:

 • Organic out-growth from scripts

 • Imperative programming “Do this, then do this” is very natural

 • Infrastructure is very very reliable these days

 • Infrequent actions
X-Ray Vision: Open Loops
X-Ray Vision: Open Loops

Amazon CloudWatch
Complete visibility into your cloud resources and applications.

Collect
- Metrics and logs from all your AWS resources, applications, and services that run on AWS and on-premises servers.

Monitor
- Visualize applications and infrastructure with CloudWatch dashboards; correlate logs and metrics side by side to troubleshoot and set alerts with CloudWatch Alarms.

Act
- Automate response to operational changes with CloudWatch Events and Auto Scaling.

Analyze
- Up to 1-second metrics, extended data retention (15 months), and real-time analysis with CloudWatch Metric Math.

AWS X-Ray
AWS X-Ray helps you analyze and debug modern applications built using microservices and serverless architecture and quantify customer impact.

Collect traces
- Collect data about the request from each of the underlying application services it passes through.

Record traces
- X-Ray combines the data gathered from each service into singular units called traces.

View service map
- View the service map to see trace data such as latencies, HTTP statuses, and metadata for each service.

Analyze issues
- Drill into the service showing unusual behavior to identify the root issue.

© 2019, Amazon Web Services, Inc. or its Affiliates.
X-Ray Vision: Open Loops

• Closing loops:

 • Embrace “Measure first. Then react.”

 • Measure a lot of things. Check everything you can think to.

 • Avoid infrequent operations – make them more frequent where possible.
X-Ray Vision: Open Loops

AWS Certificate Manager
Easily provision, manage, and deploy public and private SSL/TLS certificates for use with AWS services and your internal connected resources

Get started with AWS Certificate Manager
X-Ray Vision: Open Loops

- Measure-first systems tend to be more naturally declarative

- In general, declarative are easily to formally verify

- TLA+, F*, CoQ, SAW/Cryptol
2

X-Ray Vision: Power Laws
Power Laws
Power Laws
Power Laws
Power Laws
Power Laws

• First, compartmentalize.

• More compartments means relatively smaller blast radius.

• Many real-world control systems reflect this lesson of scale.

• What next?
Power Laws

• Exponential Back-off
 • Brings our own power-law to the table

• Rate-limiters
 • Simple token buckets can be incredibly effective

• Working Backpressure
 • AWS SDK retry strategy = Token buckets + Rate-Limiters + persistent state
Power Laws

AWS Architecture Blog

Exponential Backoff And Jitter
by Marc Brooker | on 04 MAR 2015 | in Architecture | Permalink | Share

Introducing OCC

Optimistic concurrency control (OCC) is a time-honored way for multiple writers to safely modify a single object without losing writes. OCC has three nice properties: it will always make progress as long as the underlying store is available, it’s easy to understand, and it’s easy to implement. DynamoDB’s conditional writes make OCC a natural fit for DynamoDB users, and it’s natively supported by the DynamoDBMapper client.

While OCC is guaranteed to make progress, it can still perform quite poorly under high contention. The simplest of these contention cases is when a whole lot of clients start at the same time, and try to update the same database row. With one client guaranteed to succeed every round, the time to complete all the updates grows linearly with contention.
X-Ray Vision: Liveness and Lag
X-Ray Vision: Liveness and Lag

• Operating on old information can be worse than operating on no information

• Simple example: system gets very busy and workflows and metrics pipelines can build up

• Ephemeral “shocks” such as spiky loads or brief outages can end up taking very long to recover
X-Ray Vision: Liveness and Lag

• Strive for O(1) scaling as much as possible

• Provision everything, every time

• Report everything, every time

• Do everything, every time
X-Ray Vision: Liveness and Lag

• If you need to use a bus or queue, think carefully about limits on the size of that queue

• In general: short queues are safer

• LIFO queues can be a great strategy for information channels
 • Naturally prioritizes recent state
 • Out of order back-fill for any “catching up”
X-Ray Vision: False Functions
False functions

![Graph showing utilization vs load with multiple lines]

© 2019, Amazon Web Services, Inc. or its Affiliates.
False functions

- Hall of fame false function: Unix load
- Runners-up: system latency, network latency
- Hard to predict Garbage Collector behavior can be confounding
- CPU can be surprisingly effective
X-Ray Vision: Edge Triggering
Edge Triggering

utilization

load
Edge Triggering

- Edge Triggering invites modal behavior
- Often the new mode kicks in at a time of high-stress
- Edge Triggering often associated with the “Deliver exactly once” problem
- O.k. for alerting humans but usually an anti-pattern for control systems
Summary
Summary

• “Measure first” and “Integrate feedback” are deeply rewarding concepts

• Right now, this knowledge is highly leveraged

• We can think of distributed systems in terms of control theory, with 100 years of powerful mental models available

• Control Theory can help us formally analyze the stability of systems
Q&A
Colm MacCárthaigh
Thank you!