
Rossen Stoyanchev

Servlet vs Reactive

5 use cases

stacks

in

Servlet Stack

● Servlet container

● Servlet API

● Spring MVC

Reactive Stack

● Netty, Servlet 3.1+, Undertow

● Reactive Streams

● Spring WebFlux

Reactive Spring
Reactive starters in Spring Boot 2.0

Spring Framework 5 WebFlux endpoints + reactive WebClient

Reactive Spring Data Kay repositories

Spring Security

and more…

http://start.spring.io/
http://start.spring.io/
http://start.spring.io/

Servlet Stack

FilterFilter Controller
Spring
MVC

Servlet API
container

thread

SERVLET STACK

Synchronous API
Filter, Servlet … void

SERVLET STACK

Blocking I/O
InputStream, OutputStream

SERVLET STACK

servletRequest.startAsync()

SERVLET STACK

Filter ControllerFilter Servlet

SERVLET STACK SERVLET STACK

Filter ControllerFilter Servlet

… do work or receive event + dispatch()…

container-
thread-1

container-
thread-2

Servlet API

Container
thread pool

Controller

SERVLET STACK

can use
reactive clients

Input & OutputStream

startAsync()

Concurrency
modelsConcurrencyConcurrencyConcurrency

“elastic”
thread pool

“parallel”
thread pool

100s, 1000s
waiting blocked threads

~ per CPU core
busy worker threads

Synchronous APIs Non-blocking code

What does it take to not block ?

event loop at the core

event driven architecture
message passing

means to compose async logic

bonus:
back pressure (a.k.a flow control)

Reactive Stack

Spring
WebFlux

Web
Filter

NO
BLOCKING

ANY
TIME

Controller
Reactive
Server
Adapter

Web
Filter

HTTP Server
Event Loop

REACTIVE
STACK

Asynchronous API
WebFilter, WebHandler…

Mono<Void>

REACTIVE
STACK

REACTIVE
STACK

Reactor Mono
Reactive Streams Publisher

0..1 elements

http://www.reactive-streams.org/
http://www.reactive-streams.org/

Non-blocking read:
 Flux<DataBuffer> getBody()

REACTIVE
STACK

Non-blocking write:
writeWith(Flux<DataBuffer>)

REACTIVE
STACK

REACTIVE
STACK

Reactor Flux
Reactive Streams Publisher

0..N elements

http://www.reactive-streams.org/
http://www.reactive-streams.org/

request(1)

onNext(item)

Flux

Reactive Streams back pressure

request(1)

onNext(item)

http://www.reactive-streams.org/
http://www.reactive-streams.org/

request(n)

onNext(item)

FMonoEFluxDMonoCMonoB

Controller
Spring

WebFluxWebFilter

Composition of async logic

MonoA

A B C

EF D

Actual processing

HTTP Server
Event Loop

REACTIVE
STACK

repository

 Use Case #1

dataReactive

Demo

HTTP GET with reactive data repository
Designed to work on both Spring MVC and Spring WebFlux

Simply return reactive type (Flux, Observable) from @Controller

Flux<T>:

finite collection or infinite stream?

Use media type to decide

“application/json”

finite collection (JSON array)

No back pressure:

Flux#collectToList

(request all + buffer)

 Use Case #2

back pressure
with

Response stream

“text/event-stream”,
“application/stream+json”

infinite stream

Back pressure:

request(n),
write, flush,

repeat

HTTP GET with streaming response
Simply return reactive type (Flux, Observable) from @Controller

Back pressure on Spring MVC and WebFlux

Servlet
Container

Servlet
API

Spring
MVC

Flux

Back pressure against blocking OutputStream

Controller Flux
Data
Repository

onNext(T)onNext(T)
Blocking write on

MvcAsync thread pool

request(n)request(1)

 SERVLET STACK …

Servlet 3.1 non-blocking I/O ?

Unlike Servlet 3.0 async, Servlet 3.1 non-blocking is hard to retrofit

Requires deeper change

Mutually exclusive with rest of the Servlet API

HTTP
Server

Server
Adapter

Flux Spring
WebFlux

Flux

Response streaming on reactive stack

Controller Flux Data
Repo

onNext(T)onNext(T)onNext(T)

Non-blocking write
back pressure

to socket

request(n)request(n)request(n)

Demo

 Use Case #3
remote service

orchestration

Reactive

Demo

Orchestrate non-blocking, nested remote service calls with ease

Similar to reactive data access

Spring MVC and Spring WebFlux

Reactive WebClient

 Use Case #4

request inputReactive

Back pressure to socket
No reading until reactive demand signalled from upstream

Non-blocking

Reactive stack only territory !

HTTP POST with data
@RequestBody argument with reactive type (Mono, Single)

Reactive type is not required

 Use Case #5

Data Ingestion

back pressure
with

Media type indicates infinite stream is expected

Non-blocking streaming + back pressure

HTTP POST with stream of data

HTTP
Server

Server
Adapter

Flux Spring
WebFlux

Flux

Data ingestion on reactive stack

Controller

onNext(T)onNext(T)
Non-blocking read

back pressure
from socket

request(n)request(n)

Servlet stack summary

Reactive data repository

Streaming to the response with back pressure

Reactive orchestration of remote services

Reactive request input

Data ingestion with back pressure

Reactive stack summary

Reactive data repository

Streaming to the response with back pressure

Reactive orchestration of remote services

Reactive request input

Data ingestion with back pressure

Q & A
@rstoya05

