MAKING A LAZY RIVER, NOT A WHITEWATER RAPIDS

ADOPTING STREAM PROCESSING FOR INSTRUMENTATION

SEAN CRIBBS
SENIOR PRINCIPAL ENGINEER

M3
 COMCAST

HD not avallablo in all aroas.

HOW ARE WE INSTRUMENTING?

- Wide variety of products
super important metric

\sim	\sim^{n}
\sim	

"operational visibility"

AREAS FOR IMPROVEMENT

AREAS FOR IMPROVEMENT

x Human anomaly detector

AREAS FOR IMPROVEMENT

x Human anomaly detector
x Correlation is awkward

AREAS FOR IMPROVEMENT

x Human anomaly detector
x Correlation is awkward
x Copious data, low fidelity

HOW ARE WE INSTRUMENTING?

- Wide variety of products

HOW ARE WE
INSTRUMENTING?

- Wide variety of products
- Log files

HOW ARE WE
 INSTRUMENTING?

- Wide variety of products
- Log files
- ...more log files

$$
2
$$

index.js:65 500 Server Error
index.js:65 it's broke fam

AREAS FOR IMPROVEMENT

AREAS FOR IMPROVEMENT

x Developers write bad logs

AREAS FOR IMPROVEMENT

x Developers write bad logs
x Logs lack context

AREAS FOR IMPROVEMENT

x Developers write bad logs
x Logs lack context
x Text logs lack fidelity

PROGRAMMABILITY GIVES

FULL FLEXIBILITY OVER MONITORING BEHAVIOR

HIGHER FIDELITY DATA GIVES A

RICH SET OF DIMENSIONS

INCREMENTAL PROCESSING GIVES

PERFORMANCE AND SCALE

INCREMENTAL PROCESSING GIVES

PERFORMANCE AND SCALE

RIEMANN

"Sonata can capture 95\% of all traffic pertaining to the query, while reducing the overall data rate by a factor of about 400 and the number of required counters by four orders of magnitude."

```
NETWORK MONITORING AS A STREAMING ANALYTICS PROBLEM
    GUPTA, ET AL,HOTNETS'16
```

CHALLENGES

CHALLENGES

X "You're asking me to program my monitoring system?"

CHALLENGES

x "You're asking me to program my monitoring system?"
x New paradigm, new concepts: windows, triggers, partitioning, etc

CHALLENGES

x "You're asking me to program my monitoring system?"
x New paradigm, new concepts: windows, triggers, partitioning, etc
x Our goal is not to make Hadoop easier/better/faster

"Instead of imagining that our main task is to instruct a computer what to do, let us concentrate rather on explaining to human beings what we want a computer to do."

JUPYTER, MATHEMATICA

Jupyter Lorenz Differential Equations (antomem
 File Edit Kew insert Cell Kemel Help

Exploring the Lorenz System

In this Notebook we explore the Lerenz system of differentia equitions

$$
\begin{aligned}
& \dot{x}=\sigma(y-x) \\
& \dot{y}=\rho x-y-x z \\
& \dot{z}=-\beta z+x y
\end{aligned}
$$

This is one of the classic systems in non-linear differential equations. It exhibits a range of
complex behaviors as the complex behaviors as the parameters $(\sigma, \beta, \rho$, are varied, including what are known as ch
solutions. The system was orignally developed as a simplified mathematical model for solutions. The system was originally developed as a simplified mathematical model for
atmospheric convection in 1963 . atmospheric convection in 1963.

https://www.wolfram.com/mathematica/ awoiframoloudicom/app/bbiects/4490-b011-6b468e872977

FIMIICA ONLINE			\square	0	Q
(2)	Hie	Fomar	mome	0	Inaton

 recere ${ }^{2} 2+$ S.abocrlatel/ho, ofll

 Untion $(6, y, i), v<6 \| y>6$

(3) - GridiPartition $[$ Plot $30($ Re $[\mu],(x, y) \in a$, Boxed $\rightarrow F$
infl- evsD = MatrixPropertyoistribution(Arg[Eigenvalue ps = RandonSample /e RandonVariate [evsp, 10 *5]; Histogram30 [ps, (-Pi, Pi, 0.2), PDF, PlotThese \rightarrow

EVE

http://play.witheve.com/\#/examples/bar-graph.eve

[\#pet name: "aog" Length: 14]
 [\#pet name: "orangutan" length: 9]
 [\#pet name: "lemur" length: 5]

Each pet is a single bar on our graph. The bar's label is the pet's name, it's height is the pet's length. The sort property tells the bar graph to draw the bar in alphabetical order based on the pets' names.
search
[\#pet name length]
ix = sort[value: name]
bind @view
[\#bar-graph | bar: [label: name height: length sort: ix]]

LITERATE PROGRAMMING BENEFITS

LITERATE PROGRAMMING BENEFITS

- "Literate programming forces you to consider a human audience."

LITERATE PROGRAMMING BENEFITS

- "Literate programming forces you to consider a human audience."
- "The human brain is wired to engage with and remember stories."

LITERATE PROGRAMMING BENEFITS

- "Literate programming forces you to consider a human audience."
- "The human brain is wired to engage with and remember stories."
- "...literate programming encourages the programmer to arrange [programs] in a way that makes narrative sense."

LITERATE PROGRAMMING BENEFITS

- "Literate programming forces you to consider a human audience."
- "The human brain is wired to engage with and remember stories."
- "...literate programming encourages the programmer to arrange [programs] in a way that makes narrative sense."
- "...you don't really understand something until you explain it to someone else."

THE AHA! MOMENT
LITERATE
DASHBOARDS,
EXECUTABLE RUNBOOKS

CREATING LITERATE DASHBOARDS

Solr Corruption / File Count Explosion

Disk Usage
\# Disk Usage

We want to be warned when our disk space free goes below 10% on any disk. However, disk usage for temporary files should be able to burst over the limit and fall back below without triggering an alert to our on-call engineer. Therefore, we alert on the exponentially-weighted moving average (EWMA).
~~stream
where(type: ["disk", "free", "percent"])
|> by([:host, :mount])
|> ewma
|> threshold(below: 10.0)
|> forward(:on_call_alert)
|> draw(:table)
\#\# Possible causes

1. Log rotation on ‘web" hosts might be configured incorrectly, filling up the disk.
2. Stale software artifacts from builds on 'ci' hosts might be consuming too much space.

Disk Usage

We want to be warned when our disk space free goes below 10% on any disk. However disk usage for temporary files should be able to burst over the limit and fall back below without triggering an alert to our on-call engineer. Therefore, we alert on the exponentially-weighted moving average (EWMA).

	$/$
web-01	50.2%
web-02	46.5%
ci-01	19.3%

Possible causes

1. Log rotation on web hosts might be configured incorrectly, filling up the disk.
2. Stale software artifacts from builds on ci hosts might be consuming too much space

UNDER THE HOOD

OPERATIONAL VISIBILITY PROJECT

OPERATIONAL VISIBILITY PROJECT

OPERATIONAL VISIBILITY PROJECT

OPERATIONAL VISIBILITY PROJECT

OPERATIONAL VISIBILITY PROJECT

OPERATIONAL VISIBILITY PROJECT

OPERATIONAL VISIBILITY PROJECT

OPERATIONAL VISIBILITY PROJECT

OPERATIONAL VISIBILITY PROJECT

OPERATIONAL VISIBILITY PROJECT

OPERATIONAL VISIBILITY PROJECT

OPERATIONAL VISIBILITY PROJECT

OPERATIONAL VISIBILITY PROJECT

OPERATIONAL VISIBILITY PROJECT

OPERATIONAL VISIBILITY PROJECT

OPERATIONAL VISIBILITY PROJECT

OPERATIONAL VISIBILITY PROJECT

ELIXIR GENSTAGE \& FLOW

CONSUMER

ELIXIR GENSTAGE \& FLOW

METRICS-FOCUSED STREAM COMBINATORS

METRICS-FOCUSEDSTREAM COMBINATORS
where(type: ["disk", "free", "percent"])

METRICS-FOCUSEDSTREAM COMBINATORS
where(type: ["disk", "free", "percent"])
|> by([:host, :mount])

METRICS-FOCUSEDSTREAM COMBINATORS
where(type: ["disk", "free", "percent"])
|> by([:host, :mount])
|> ewma

METRICS-FOCUSEDSTREAM COMBINATORS
where(type: ["disk", "free", "percent"])
|> by([:host, :mount])
|> ewma
|> threshold(below: 10.0)

METRICS-FOCUSEDSTREAM COMBINATORS
where(type: ["disk", "free", "percent"])
|> by([:host, :mount])
|> ewma
|> threshold(below: 10.0)
|> forward(:on_call_alert)

METRICS-FOCUSEDSTREAM COMBINATORS

where(type: ["disk", "free", "percent"])
|> by([:host, :mount])
|> ewma
|> threshold(below: 10.0)
|> forward(:on_call_alert)
|> draw(:table)

SEGMENTING PIPELINES FOR RE-USE

SEGMENTING PIPELINES FOR RE-USE

```
where(type: ["disk", "free", "percent"])
|> by([:host, :mount])
|> ewma
|> threshold(below: 10.0)
|> forward(:on_call_alert)
|> draw(:table)
```

AUTOMATIC WRITE-ATTENUATION BY

SEGMENTING PIPELINES FOR RE-USE

```
where(type: ["disk", "free", "percent"])
    |> by([:host, :mount])
|> ewma
|> threshold(below: 10.0)
    |> forward(:on_call_alert)
    |> draw(:table)
```

AUTOMATIC WRITE-ATTENUATION BY

SEGMENTING PIPELINES FOR RE-USE

```
where(type: ["disk", "free", "percent"])
    |> by([:host, :mount])
|> ewma
|> threshold(below: 10.0)
|> forward(:on_call_alert)
    |> draw(:table)
where(type: ["disk", "free", "percent"])
|> by([:host, :mount])
|> ewma
|> history(minutes: 30)
```

AUTOMATIC WRITE-ATTENUATION BY

SEGMENTING PIPELINES FOR RE-USE

```
where(type: ["disk", "free", "percent"])
    |> by([:host, :mount])
|> ewma
|> threshold(below: 10.0)
|> forward(:on_call_alert)
    |> draw(:table)
where(type: ["disk", "free", "percent"])
|> by([:host, :mount])
|> ewma
|> history(minutes: 30 )
```

AUTOMATIC WRITE-ATTENUATION BY

SEGMENTING PIPELINES FOR RE-USE

```
where(type: ["disk", "free", "percent"])
    |> by([:host, :mount])
|> ewma
|> threshold(below: 10.0)
|> forward(:on_call_alert)
    |> draw(:table)
```


|> history(minutes: 30)

LESSONS LEARNED

RETROSPECTIVE

RETROSPECTIVE

\checkmark Literate programs make for good collaboration

RETROSPECTIVE

\checkmark Literate programs make for good collaboration
x Our vision is ahead of the organization

RETROSPECTIVE

\checkmark Literate programs make for good collaboration
x Our vision is ahead of the organization
x Stream processing is just the means, not the end

RETROSPECTIVE

\checkmark Literate programs make for good collaboration
\times Our vision is ahead of the organization
x Stream processing is just the means, not the end
x Much more research is needed

REFERENCES

https://git.io/vQIgp

extra slides

WHY ELIXIR?

THE PATID

WHY ELIXIR?

\checkmark Familiarity

WHY ELIXIR?

\checkmark Familiarity
\checkmark Meta-programming

WHY ELIXIR?

\checkmark Familiarity
\checkmark Meta-programming
\checkmark Transparent, low-latency runtime

WHY ELIXIR?

\checkmark Familiarity
\checkmark Meta-programming
\checkmark Transparent, low-latency runtime
\checkmark Our ops time/budget is small

WHY ELIXIR?

\checkmark Familiarity
\checkmark Meta-programming
\checkmark Transparent, low-latency runtime
\checkmark Our ops time/budget is small
\checkmark Generic Erlang/Elixir pitch, "let it crash", etc

"For small inputs ($\leq 0.5 \mathrm{~GB}$), the Metis single-machine MapReduce system performs best. This matters, as small inputs are common in practice: 40-80\% of Cloudera customers' MapReduce jobs and 70% of jobs in a Facebook trace have $\leq 1 \mathrm{~GB}$ of input."

```
MUSKETEER: ALL FOR ONE,ONE FOR ALLIN DATA PROCESSING SYSTEMS
    GOG, ET AL, EUROSYS'15
```

