
From Zero to
Production-Ready
in Minutes
Tim Bozarth
@timbozarth

Dev Experience:
Level up your Eng

Effectiveness

Agenda

1. It was the best of times...

2. Best practices made easy

3. Goodbye hand-written clients

4. From NIH to OSS

It was the best of
times…

(ie: The story of the skeletons in our closet)

1

About Netflix..

100m+ members

1000+ developers

190+ countries

1/3 US download traffic

500+ microservices

Over 100,000 VMs

Runtime Platform
Enable developers to productively create and integrate

software in the Netflix ecosystem.

Major Investments in
Platform

High Availability = Winning
Moments of
Truth

High Availability =

Challenges:

Hard to take advantage of
evolving best practices

Owning client-side logic is complex
and stressful

Non-Java experience is hard

Challenges:

Productivity++
(availability is table stakes)

Complexity is the
mind killer.

Runtime Platform
Enable developers to productively create and integrate

software in the Netflix ecosystem.

Best-practices
made easy

(Better living through less complexity)

2

Generators

Generators
What:
Gives you a deployed app
on the “paved road” in
minutes.

Generators
Why:
To make it easy to adopt,
understand, and build
production-ready apps.

+
Best

Practices

Historically:
“Let’s go!”

With Generators:
“Let’s go!”

+

+

+

+

+

=

But wait! There’s
more!
(Consistency)

Components != PaaS

Goodbye
hand-written

client libraries

3

@Netflix
every service owner
is responsible for a

client

Clients defend
themselves from

failure
(and the foundation to much of Netflix’s micro-service success)

Your	service

Their	service

Your	
Client

RPC	Internals

Platform	
Integration

Serialization	&	
Deserialization

Bespoke	business	logic Yo
ur

C
lient

Your	service

Includes	integration	with	Metrics,	
Caching,	Discovery,	Fallbacks,	etc...

Your	Service

RPC	Internals

Dependencies

RPC	Internals

Platform	
Integration

Serialization	&	
Deserialization

Bespoke	business	logic

Server	Logic

Platform	IntegrationSerialization	&	
Deserialization

Yo
ur

C
lient

Their
Server

Problems

Server-API changes are a nightmare

So much hand-written RPC-related
code

No cross-language client story

These are solvable
problems

+

2 big wins:
Code Generation

New Abstraction Layer

P
R

O
T

O

Your	Service

gRPC generated	interfacesDepend
encies

gRPC Generated	Client

Bespoke	business	logic (please	no)

Server	Logic

Yo
ur

C
lient

Their
Server

Service	
Proto

Caching, Circuit-breakers,
Fallbacks, Failure

Injection, Discovery,
Request-context-tracing,
Metrics, Retries, Hedged

Requests, oh my!

Interceptors
encapsulate

common patterns
(outside the user’s typical concern domain)

Client Defense Examples:
• Fallbacks
• Advanced Caching
• Retries
• Failure Injection
• Hedged Requests
• Circuit Breakers (Hystrix)
• Common analytics & event-logs
• ... and much more

Complex,
multi-tier
caching

took a lot of
code.

(In proto)

(In client
config)

gRPC ❤ languages!

NIH → OSS

4

V
a

lu
e

Effort

V
a

lu
e

Effort

With every step
comes the decision
to take another.

Inertia is a powerful
force, and a terrible

strategy.

Favor commodity
when it’s not our
core competency

(oh right! AWS!)

Wrapping up…

Ω

Everything discussed is done

gRPC = 10%+ of Netflix RPC

800+ projects made with generators

100+ services currently deployed from
generators

This stuff = Default for 6-12 months

Code generation is the short &
long term solution

IDLs = micro-services’ best
friend

Don’t build stuff you don’t
need to

<Appendix>

