Semi-Supervised Deep Learning for Climate @ Scale

Prabhat Lawrence Berkeley National Laboratory

> QCon 6/28/2017

Introduction to Deep Learning

- History
- Commercial Applications
- Convolutional Neural Nets

Climate Science

- Motivation
- Representational Challenges
 - Supervised CNNs
 - Semi-Supervised CNNs
- Scaling Challenges

Introduction to Deep Learning

- History
- Commercial Applications
- Convolutional Neural Nets
- Climate Science
 - Motivation
 - Representational Challenges
 - Supervised CNNs
 - Semi-Supervised CNNs
 - Scaling Challenges

1960's (1st Wave)

Single Layer networks

XOR problem killed research for two decades

Mid-1980s (2nd Wave)

- Multi-layer networks
- Backpropagation algorithm

hidden layer 1 hidden layer 2

2010s (3rd Wave)

• Big Data

-O(M) labeled images

- Big Compute
- 'Deep' Learning

nature

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

At last – a computer program that can beat a champion Go player PAGE 484

ALL SYSTEMS GO

CONSERVATION SONGBIRDS A LA CARTE Illegal harvest of millions of Mediterranean birds PAGE 452

SAFEGUARD TRANSPARENCY Don't let openness backfire on individuals PAGE 459

RESEARCH ETHICS

POPULAR SCIENCE

Dawkins's calling

card 40 years on

PAGE 462

28 January 2016 Vol. 529, No. 7587

WHEN GENES GOT 'SELFISH'

Deep Learning for Self-Driving Cars

Deep Learning for Speech

Deep Learning for Computer Vision

Imagenet ILSVRC Challenge

Error rate¹

1: ImageNet top 5 error rate Source: ImageNet

Training Convolutional Networks

• Workflow:

- 1. Identify training data (images + labels)
- 2. Converge on hyper-parameters (architecture,...)
- 3. Random parameter initialization
- 4. Forward pass (filter images, make label prediction)
- 5. Compute Error

Office of

Science

6. Backward pass (compute gradients, update parameters)

Convolution and Pooling

3-channel input image of size 32×32

16 feature maps of size 28×28

ImageNet Architecture

Conv 1: Edge+Blob

Conv 3: Texture

Conv 5: Object Parts

Fc8: Object Classes

Outline

- Introduction to Deep Learning
 - History
 - Commercial Applications
 - Convolutional Neural Nets

Climate Science

- Motivation
- Representational Challenges
 - Supervised CNNs
 - Semi-Supervised CNNs
- Scaling Challenges

How will extreme weather change in the future?

- Look back in time (Paleoclimate records)
- Look forward in time (Climate simulations)
 - Internal climate system variability
 - External forcings (solar activity, volcanic eruptions)
 - Anthropogenic influence

CAM5 hi-resolution simulations (0.25°, prescribed aerosols)

Michael Wehner, Prabhat, Chris Algieri, Fuyu Li, Bill Collins Lawrence Berkeley National Laboratory

Kevin Reed, University of Michigan

Andrew Gettelman, Julio Bacmeister, Richard Neale National Center for Atmospheric Research

June 1, 2011

Challenge: Multi-Variate Data

Task: Find Extreme Weather Patterns

- Task is analogous to commercial vision applications
 - Pattern Classification
 - Feature Learning
- Differences stem from unique attributes of Climate Data
 - Multi-channel
 - Double precision floating point
 - Statistics are likely different

Outline

- Introduction to Deep Learning
 - History
 - Commercial Applications
 - Convolutional Neural Nets

Climate Science

- Motivation
- Representational Challenges
 - Supervised CNNs
 - Semi-Supervised CNNs
- Scaling Challenges

• Training Input: Cropped, Centered, Multi-variate patches with Labels

- –Tropical Cyclone (TC)
- -Atmospheric River (AR)
- -Weather Front (WF)

• Output: Binary (Yes/No) on Test patches

- Is there a TC in the patch?
- Is there an AR in the patch?
- Is there a WF in the patch?

Training Data

CLASSIFICATION	FICATION Image Variables		Total Examples		
			(+ve) (-ve)	
Tropical Cyclone	32x32	PSL,UBOT,VBOT,TMQ, U850,V850,T200,T500	10000	10000	
Atmospheric Rivers	148x224	TMQ, Land Sea mask	6500	6800	
Weather Fronts	27x60	T2m, Precip, PSL	5600	6500	

Supervised Convolutional Architecture Nersc

CLASSIFICATION	Conv1	Pool1	Conv2	Pool2	Full	Full
Tropical Cyclone	5x5-8	2x2	5x5-16	2x2	50	2
Atmospheric River	12x12-8	3x3	12x12-16	2x2	200	2
Weather Fronts	5x5-16	2x2	5x5-16	2x2	400	2

Input Pooling Pooling Class score Convolution Convolution Fully connect

Supervised Classification Accuracy

	Logistic Regression		K-Nearest Neighbor		Support Vector Machine		Random Forest		ConvNet	
	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test
Tropical Cyclone	96.8	95.85	98.1	97.85	97.0	95.85	99.2	99.4	99.3	99.1
Atmospheric Rivers	81.97	82.65	79.7	81.7	81.6	83.0	87.9	88.4	90.5	90.0
Weather Fronts	84.9	89.8	72.46	76.45	84.35	90.2	80.97	87.5	88.7	89.4

Hyper-parameter optimization applied with Spearmint for all methods

• Objectives:

- Create unified architecture for all weather patterns
- Predict bounding box location for weather pattern
- Discover new patterns
 - •Might have few/no labels for several weather patterns

Semi-Supervised Convolutional Architecture

Classification + Bounding Box Regression

original

reconstruction

Classification + Regression Results

Outline

- Introduction to Deep Learning
 - History
 - Commercial Applications
 - Convolutional Neural Nets
- Climate Science
 - Motivation
 - Representational Challenges
 - Supervised CNNs
 - Semi-Supervised CNNs
 - Scaling Challenges

• Performance and Scaling

- Current networks take days to train on O(10) GB datasets
- We have O(10) TB datasets on hand
- Quick turnaround is critical for hyper-parameter tuning
 - # layers, # filters, filter size, stride
 - Pooling operation
 - Learning rates, Learning schedule
 - Optimizers (ADAM, SGD,...)

Deep Learning Stack

Deep Learning Stack

Hardware

- Input Data:
 - 768x768x16
 - 15 TB
 - 400K images

•9 convolution, 5 deconvolution layers

-300MB parameters

- Target hardware: Intel Xeon Phi (Knights Landing)
- Intel Caffe with MKL 2017 library
 - Optimized DL primitives for KNL
 - Added support for de-convolutions

- Data Parallelism (vs. Model Parallelism)
- Optimizations:
 - Hybrid parameter updates
 - Topology aware placement
 - Dedicated Parameter server per-layer
- Implementation uses Intel MLSL
 - Proxy threads/processes drive communication
 - Improvement over vanilla MPI in terms of bandwidth utilization

Multi-Node Scaling Strategy

SYNCHRONOUS

ASYNCHRONOUS

+ve	Same # iterations to converge as serial implementation	 Faster Iterations Robustness to node failures Better control of batch size
-ve	 Straggler effect Susceptible to node failure Batch size grows with # nodes 	More #iterations to converge as serial implementation

Changing # compute groups controls level of asynchrony

Topology Aware Placement

Multi-Node Scaling Results

BERKELEY LAB

Statistical Convergence..

• Single KNL node (66 cores)

- 1-4 TFLOP/s

•9600 KNL nodes (633,600 cores)

- 15 PFLOP/s peak
- 13 PFLOP/s sustained
- 12.6 seconds/iteration; 7200x speedup over single node runtime

- Genuine excitement in the field of AI and DL
 - Commercial applications spanning vision, speech and control
- Deep Learning is viable tool for find extreme weather patterns
 - Helps in characterizing changes in the future
- Representational Challenges:
 - Supervised architectures can match hand-tuned criteria
 - Semi-supervised architectures can potentially discover new patterns

Computational Challenges:

- Single node performance on KNL: 1-4 TF
- Multi-node scaling on 9600 nodes: 15 PF

- Intel Research: Nadathur Satish, Narayanan Sundaram, Mostofa Patwary, Amir Khosrowshahi, Pradeep Dubey
- Stanford: Ioannis Mitliagkas, Jian Yang, Chris Re (Stanford)
- U. Montreal: Chris Beckham, Tegan Maharaj, Chris Pal
- Berkeley Lab: Thorsten Kurth, Evan Racah, Wahid Bhimji, Yunjie Liu, Michael Wehner, William Collins

Questions? prabhat@lbl.gov