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Outline

• Introduction	to	Deep	Learning
– History
– Commercial	Applications
– Convolutional	Neural	Nets

• Climate	Science	
– Motivation	
– Representational	Challenges

• Supervised	CNNs
• Semi-Supervised	CNNs	

– Scaling	Challenges
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1960’s (1st Wave)

•Single	Layer	networks

•XOR	problem	killed	research	for	two	decades



Mid-1980s (2nd Wave)

•Multi-layer	networks
•Backpropagation	algorithm



2010s (3rd Wave)

•Big	Data
–O(M)	labeled	images

•Big	Compute
• ‘Deep’	Learning	





Deep Learning for Self-Driving Cars



Deep Learning for Speech
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Deep Learning for Computer Vision
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Slide Courtesy of Nervana Systems



Training Convolutional Networks
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• Workflow:
1. Identify	training	data	(images	+	labels)
2. Converge	on	hyper-parameters	(architecture,…)
3. Random	parameter	initialization	
4. Forward	pass	(filter	images,	make	label	prediction)
5. Compute	Error
6. Backward	pass	(compute	gradients,	update	parameters)
–



Convolution and Pooling
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ImageNet Architecture
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How	will	extreme	weather	change	in	the	future?
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How will extreme weather change in the future?

•Look	back	in	time	(Paleoclimate	records)

•Look	forward	in	time	(Climate	simulations)
– Internal	climate	system	variability
– External	forcings (solar	activity,	volcanic	eruptions)
– Anthropogenic	influence	
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Climate Simulations
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Challenge: Multi-Variate Data
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Task: Find Extreme Weather Patterns



Can Deep Learning find Extreme Weather 
Patterns?
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• Task	is	analogous	to	commercial	vision	applications	
• Pattern	Classification
• Feature	Learning

• Differences stem	from	unique	attributes	of	Climate	
Data

• Multi-channel
• Double	precision	floating	point
• Statistics	are	likely	different	
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Supervised Learning

•Training	Input:	Cropped,	Centered,	Multi-variate	
patches	with	Labels	

–Tropical	Cyclone	(TC)
–Atmospheric	River	(AR)
–Weather	Front	(WF)

•Output:	Binary	(Yes/No)	on	Test	patches
– Is	there	a	TC	in	the	patch?
– Is	there	an	AR	in	the	patch?
– Is	there	a	WF	in	the	patch?
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CLASSIFICATION Image 
Dimension

Variables Total Examples

(+ve)                       (-ve)

Tropical Cyclone 32x32 PSL,UBOT,VBOT,TMQ,
U850,V850,T200,T500

10000 10000

Atmospheric 
Rivers

148x224 TMQ, Land Sea mask 6500 6800

Weather Fronts 27x60 T2m, Precip, PSL 5600 6500

Training Data



CLASSIFICATION Conv1 Pool1 Conv2 Pool2 Full Full

Tropical Cyclone 5x5-8 2x2 5x5-16 2x2 50 2

Atmospheric River 12x12-8 3x3 12x12-16 2x2 200 2

Weather Fronts 5x5-16 2x2 5x5-16 2x2 400 2

Supervised Convolutional Architecture



Logistic 
Regression

K-Nearest 
Neighbor

Support Vector 
Machine

Random 
Forest

ConvNet

Train Test Train Test Train Test Train Test Train Test

Tropical 
Cyclone 

96.8 95.85 98.1 97.85 97.0 95.85 99.2 99.4 99.3 99.1

Atmospheric 
Rivers

81.97 82.65 79.7 81.7 81.6 83.0 87.9 88.4 90.5 90.0

Weather 
Fronts

84.9 89.8 72.46 76.45 84.35 90.2 80.97 87.5 88.7 89.4

Hyper-parameter optimization applied with Spearmint for all methods

Supervised Classification Accuracy



Semi-Supervised Learning

• Objectives:
– Create	unified	architecture	for	all	weather	patterns	
– Predict	bounding	box	location	for	weather	pattern	
– Discover	new	patterns

•Might	have	few/no	labels	for	several	weather	patterns
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Semi-Supervised Convolutional 
Architecture
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Encoder Decoder

Classification + Bounding Box Regression



Reconstruction Results
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Classification + Regression Results
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Ground Truth
Prediction
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Need for Speed

• Performance	and	Scaling
– Current	networks	take	days	to	train	on	O(10)	GB	datasets
– We	have	O(10)	TB	datasets	on	hand	

• Quick	turnaround	is	critical	for	hyper-parameter	
tuning

– #	layers,	#	filters,	filter	size,	stride
– Pooling	operation
– Learning	rates,	Learning	schedule
–Optimizers	(ADAM,	SGD,…)
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Deep Learning Stack
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Technologies

Deep Learning	
Frameworks

Multi Node	libraries

Single Node	libraries

Hardware

MLSL MPI GRPC

Torch, Neon, CNTK, MXNet, …

CuDNNMKL

KNL KNM GPUs FPGAs



Deep Learning Stack
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Hardware
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Input Data + Architecture

• Input	Data:	
– 768x768x16
– 15	TB	
– 400K	images	

•9	convolution,	5	deconvolution	layers
–300MB	parameters
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Single Node Optimizations

•Target	hardware:	Intel	Xeon	Phi	(Knights	Landing)	
• Intel	Caffe with	MKL	2017	library

– Optimized	DL	primitives	for	KNL	
– Added	support	for	de-convolutions
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Single Node Performance
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Multi-Node strategy

•Data	Parallelism	(vs.	Model	Parallelism)
•Optimizations:

– Hybrid	parameter	updates
– Topology	aware	placement
– Dedicated	Parameter	server	per-layer

• Implementation	uses	Intel	MLSL
– Proxy	threads/processes	drive	communication
– Improvement	over	vanilla	MPI	in	terms	of	bandwidth	
utilization
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Multi-Node Scaling Strategy
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+ve
• Same # iterations to converge as 

serial implementation
• Faster Iterations
• Robustness to node failures
• Better control of batch size

-ve
• Straggler effect
• Susceptible to node failure
• Batch size grows with # nodes

• More #iterations to converge as serial 
implementation



Hybrid Synchronization
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Fully Synchronous Fully AsynchronousHybrid

Changing # compute groups controls level of asynchrony
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Topology Aware Placement
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Multi-Node Scaling Results

- 52 -

Strong Scaling
Overall Batch size fixed

Weak Scaling
Overall batch size increases with #nodes

Batch size/node fixed



Statistical Convergence..
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Climate HEP



Overall Performance

•Single	KNL	node	(66	cores)
– 1-4	TFLOP/s

•9600	KNL	nodes	(633,600	cores)
– 15	PFLOP/s	peak
– 13	PFLOP/s	sustained
– 12.6	seconds/iteration;	7200x	speedup	over	single	node	
runtime
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Conclusions
• Genuine	excitement	in	the	field	of	AI	and	DL

– Commercial	applications	spanning	vision,	speech	and	control	
• Deep	Learning	is	viable	tool	for	find	extreme	weather	
patterns	

– Helps	in	characterizing	changes	in	the	future	
• Representational	Challenges:

– Supervised	architectures	can	match	hand-tuned	criteria
– Semi-supervised	architectures	can	potentially	discover	new	
patterns

• Computational	Challenges:
– Single	node	performance	on	KNL:	1-4	TF
–Multi-node	scaling	on	9600	nodes:	15	PF
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