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Background
• VP Engineering at Stitch Fix

o Combining “Art and Science” to revolutionize apparel retail

• Consulting “CTO as a service”
o Helping companies scale engineering organizations and technology

• Director of Engineering for Google App Engine
o World’s largest Platform-as-a-Service

• Chief Engineer / Distinguished Architect at eBay
o Multiple generations of eBay’s infrastructure
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Combining Art and 
[Data] Science

• 1:1 Ratio of Data Science to Engineering
o Almost 100 software engineers
o Almost 100 data scientists and algorithm developers
o Unique in our industry

• Apply intelligence to *every* part of the business
o Buying
o Inventory management
o Logistics optimization
o Styling recommendations
o Demand prediction

• Humans and machines augmenting each other
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Styling at 
Stitch Fix

Personal styling

Inventory
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Personalized
Recommendations

Inventory
Algorithmic 

recommendations

Machine learning
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Expert Human
Curation

Human 
curation

Algorithmic 
recommendations
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How do we work, and why 
does it work?



Modern Software
Development

Practices

CultureTechnology

Organization
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Small
“Service” Teams

• Teams Aligned to Business Domains
o Clear, well-defined area of responsibility
o Single service or set of related services

• Cross-functional Teams
o All skill sets needed to do the job

• Depend on other teams for supporting services, 
libraries, and tools
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Test-Driven 
Development

• Tests help you go faster
o Tests “have your back”
o Development velocity

• Tests make better code
o Confidence to break things
o Courage to refactor mercilessly

• Tests make better systems
o Catch bugs earlier, fail faster
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“Do you have time to do it 
twice?”

“We don’t have time to do it 
right!”



Test-Driven 
Development

• Do it right (enough) the first time
o The more constrained you are on time and resources, the more important 

it is to build solid features
o Build one great thing instead of two half-finished things

• Right ≠ Perfect (80 / 20 Rule)

• è Basically no bug tracking system (!)
o Bugs are fixed as they come up
o Backlog contains features we want to build
o Backlog contains technical debt we want to repay

@randyshoup linkedin.com/in/randyshoup



Continuous
Delivery

• Most applications deployed multiple times per day

• More solid systems
o Release smaller units of work
o Smaller changes to roll back or roll forward
o Faster to repair, easier to understand, simpler to diagnose

• Rapid experimentation
o Small experiments and rapid iteration are cheap
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DevOps
• End-to-end Ownership

o Team owns service from design to deployment to retirement

• Responsible for 
o Features
o Quality
o Performance
o Operations
o Maintenance
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You Build It, You Run It.
-- Werner Vogels
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Evolution to 
Microservices

• eBay 
• 5th generation today
• Monolithic Perl à Monolithic C++ à Java à microservices

• Twitter
• 3rd generation today
• Monolithic Rails à JS / Rails / Scala à microservices

• Amazon
• Nth generation today
• Monolithic Perl / C++ à Java / Scala à microservices
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First Law of Distributed Object 
Design: 

Don’t distribute your objects!
-- Martin Fowler



If you don’t end up regretting 
your early technology 
decisions, you probably over-
engineered.

-- me
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• Simple, well-defined interface
• Modular and independent
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Microservices are nothing 
more than SOA done properly.

-- me



Microservices

• Single-purpose
• Simple, well-defined interface
• Modular and independent
• Isolated persistence (!)

A
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Microservice
Persistence

• Approach 1:  Operate your own data store
o Store to your own instance(s) of {Postgres, MySQL, etc.}, owned and 

operated by the service team

• Approach 2:  Use a persistence service
o Store to your own schema in {Dynamo, RDS, Spanner, etc.}, operated as a 

service by another team or by a third-party provider
o Isolated from all other users of the service

• è Only external access to data store is through 
published service interface
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Events as
First-Class Construct

• “A significant change in state”
o Statement that some interesting thing occurred
o 0 | 1 | N consumers subscribe to the event, typically asynchronously

• Traditional 3-tier system
o Presentation è interface / interaction
o Application è stateless business logic
o Persistence è database

• Fourth fundamental building block
o State changes è events
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Events as
First-Class Construct

• Events represent how the real world works
o Finance
o Software development process
o Any “workflow”
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Microservices
and Events

• Events are a first-class part of a service interface

• A service interface includes
o Synchronous request-response (REST, gRPC, etc)
o Events the service produces
o Events the service consumes
o Bulk reads and writes (ETL)

• The interface includes any mechanism for getting 
data in or out of the service (!)
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Extracting 
Microservices

• Problem:  Monolithic shared DB

• Clients
• Shipments
• Items
• Styles, SKUs
• Warehouses
• etc.

stitchfix.com Styling app Warehouse app Merch app

CS app Logistics app Payments service Profile service
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Extracting 
Microservices

• Decouple applications / services from shared DB

• Clients
• Shipments
• Items
• Styles, SKUs
• Warehouses
• etc.

stitchfix.com Styling app Warehouse app Merch app

CS app Logistics app Payments service Profile service

@randyshoup linkedin.com/in/randyshoup



Extracting 
Microservices

• Decouple applications / services from shared DB

Styling app Warehouse app

core_item

core_sku

core_client
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Extracting 
Microservices

• Step 1:  Create a service

Styling app Warehouse app

core_item

core_sku

core_client

client-service
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Extracting 
Microservices

• Step 2:  Applications use the service

Styling app Warehouse app

core_item

core_sku

core_client

client-service
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Extracting 
Microservices

• Step 3:  Move data to private database

Styling app Warehouse app

core_item

core_sku

client-service

core_client
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Extracting 
Microservices

• Step 4:  Rinse and Repeat

Styling app Warehouse app

core_sku

client-service

core_client

item-service

core_item
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Extracting 
Microservices

• Step 4:  Rinse and Repeat

Styling app Warehouse app

client-service

core_client

item-service

core_item

style-service

core_sku
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Extracting 
Microservices

• Step 4:  Rinse and Repeat

Styling app Warehouse app

client-service

core_client

item-service

core_item

style-service

core_sku
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Microservice Techniques:
Shared Data

• Problem
o Monolithic database makes it easy to leverage shared data
o Where does shared data go in a microservices world?
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Microservice Techniques:
Shared Data

• Principle: Single System of Record
o Every piece of data is owned by a single service
o That service is the canonical system of record for that data

• Every other copy is a read-only, non-authoritative 
cache
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styling-service
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billing-service



Microservice Techniques:
Shared Data

• Approach 1: Synchronous Lookup
o Customer service owns customer data
o Fulfillment service calls customer service in real time

fulfillment-service

customer-service
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Microservice Techniques:
Shared Data

• Approach 2: Async event + local cache
o Customer service owns customer data
o Customer service sends address-updated event when customer address 

changes
o Fulfillment service consumes event, caches current customer address

fulfillment-servicecustomer-service
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Microservice Techniques:
Shared Data

• Approach 3: Shared metadata library 
o Read-only metadata, basically immutable
o E.g., size schemas, colors, fabrics, US States, etc.

receiving-serviceitem-service

style-service
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Microservice Techniques:
Joins

• Problem
o Monolithic database makes joins very easy
o Splitting the data into separate services makes joins very hard
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Microservice Techniques:
Joins

• Approach 1: Join in Client Application
o Get a single customer from customer-service
o Query matching orders for that customer from order-service

• Best for single A, multiple Bs (1:N join)

A
B

order-history-page

customer-service order-service



Microservice Techniques:
Joins

• Many common systems do this
o Web application “mashup”
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Microservice Techniques:
Joins

• Approach 2: “Materialize the View”
o Listen to events from item-service and order-feedback-service
o Maintain denormalized join of items and order feedback in local storage

• Best for high cardinality A and B (M:N join)

Items Order Feedback

item-feedback-service
order-feedback-service

item-service



Microservice Techniques:
Joins

• Many common systems do this
o Most NoSQL approaches
o “Materialized view” in database systems
o Search engines
o Analytic systems
o Log aggregators
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Microservice Techniques:
Workflows and Sagas

• Problem
o Monolithic database makes transactions across multiple entities easy
o Splitting data across services makes transactions very hard
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Microservice Techniques:
Workflows and Sagas

• Transaction è Saga
o Model the transaction as a state machine of atomic events

• Reimplement as a workflow

• Roll back by applying compensating operations in 
reverse

A B C D

A B C D
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Microservice Techniques:
Workflows and Sagas

• Many common systems do this
o Payment processing
o Expense approval 
o Any multi-step workflow
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Microservice Techniques:
Workflows and Sagas

• Ideal use for Functions as a Service (“Serverless”)
o Very lightweight logic
o Stateless
o Triggered by an event

A B C D

A B C D

ƛ

ƛ

ƛ

ƛ

ƛ

ƛ

ƛ

ƛ
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Thanks!
• Stitch Fix is hiring!

o www.stitchfix.com/careers
o Based in San Francisco
o Hiring everywhere!
o More than half remote, all across US
o Application development, Platform engineering, 

Data Science

• Please contact me
o @randyshoup
o linkedin.com/in/randyshoup


