
Managing Data in
Microservices

Randy Shoup
@randyshoup

linkedin.com/in/randyshoup

Background
• VP Engineering at Stitch Fix

o Combining “Art and Science” to revolutionize apparel retail

• Consulting “CTO as a service”
o Helping companies scale engineering organizations and technology

• Director of Engineering for Google App Engine
o World’s largest Platform-as-a-Service

• Chief Engineer / Distinguished Architect at eBay
o Multiple generations of eBay’s infrastructure

@randyshoup linkedin.com/in/randyshoup

Stitch Fix

@randyshoup linkedin.com/in/randyshoup

Stitch Fix

@randyshoup linkedin.com/in/randyshoup

Stitch Fix

@randyshoup linkedin.com/in/randyshoup

Stitch Fix

@randyshoup linkedin.com/in/randyshoup

Combining Art and
[Data] Science

• 1:1 Ratio of Data Science to Engineering
o Almost 100 software engineers
o Almost 100 data scientists and algorithm developers
o Unique in our industry

• Apply intelligence to *every* part of the business
o Buying
o Inventory management
o Logistics optimization
o Styling recommendations
o Demand prediction

• Humans and machines augmenting each other

@randyshoup linkedin.com/in/randyshoup

Styling at
Stitch Fix

Personal styling

Inventory

@randyshoup linkedin.com/in/randyshoup

Personalized
Recommendations

Inventory
Algorithmic

recommendations

Machine learning

@randyshoup linkedin.com/in/randyshoup

Expert Human
Curation

Human
curation

Algorithmic
recommendations

@randyshoup linkedin.com/in/randyshoup

How do we work, and why
does it work?

Modern Software
Development

Practices

CultureTechnology

Organization

Modern Software
Development

TDD and
Continuous

Delivery

DevOpsMicroservices

Small
Teams

Modern Software
Development

TDD and
Continuous

Delivery

DevOpsMicroservices

Small
Teams

Small
“Service” Teams

• Teams Aligned to Business Domains
o Clear, well-defined area of responsibility
o Single service or set of related services

• Cross-functional Teams
o All skill sets needed to do the job

• Depend on other teams for supporting services,
libraries, and tools

@randyshoup linkedin.com/in/randyshoup

Modern Software
Development

TDD and
Continuous

Delivery

DevOpsMicroservices

Small
Teams

Test-Driven
Development

• Tests help you go faster
o Tests “have your back”
o Development velocity

• Tests make better code
o Confidence to break things
o Courage to refactor mercilessly

• Tests make better systems
o Catch bugs earlier, fail faster

@randyshoup linkedin.com/in/randyshoup

“Do you have time to do it
twice?”

“We don’t have time to do it
right!”

Test-Driven
Development

• Do it right (enough) the first time
o The more constrained you are on time and resources, the more important

it is to build solid features
o Build one great thing instead of two half-finished things

• Right ≠ Perfect (80 / 20 Rule)

• è Basically no bug tracking system (!)
o Bugs are fixed as they come up
o Backlog contains features we want to build
o Backlog contains technical debt we want to repay

@randyshoup linkedin.com/in/randyshoup

Continuous
Delivery

• Most applications deployed multiple times per day

• More solid systems
o Release smaller units of work
o Smaller changes to roll back or roll forward
o Faster to repair, easier to understand, simpler to diagnose

• Rapid experimentation
o Small experiments and rapid iteration are cheap

@randyshoup linkedin.com/in/randyshoup

Modern Software
Development

TDD and
Continuous

Delivery

DevOpsMicroservices

Small
Teams

DevOps
• End-to-end Ownership

o Team owns service from design to deployment to retirement

• Responsible for
o Features
o Quality
o Performance
o Operations
o Maintenance

@randyshoup linkedin.com/in/randyshoup

You Build It, You Run It.
-- Werner Vogels

Modern Software
Development

TDD and
Continuous

Delivery

DevOpsMicroservices

Small
Teams

Evolution to
Microservices

• eBay
• 5th generation today
• Monolithic Perl à Monolithic C++ à Java à microservices

• Twitter
• 3rd generation today
• Monolithic Rails à JS / Rails / Scala à microservices

• Amazon
• Nth generation today
• Monolithic Perl / C++ à Java / Scala à microservices

@randyshoup linkedin.com/in/randyshoup

First Law of Distributed Object
Design:

Don’t distribute your objects!
-- Martin Fowler

If you don’t end up regretting
your early technology
decisions, you probably over-
engineered.

-- me

Microservices

• Single-purpose
• Simple, well-defined interface
• Modular and independent

A

C D E

B

Microservices are nothing
more than SOA done properly.

-- me

Microservices

• Single-purpose
• Simple, well-defined interface
• Modular and independent
• Isolated persistence (!)

A

C D E

B

Microservice
Persistence

• Approach 1: Operate your own data store
o Store to your own instance(s) of {Postgres, MySQL, etc.}, owned and

operated by the service team

• Approach 2: Use a persistence service
o Store to your own schema in {Dynamo, RDS, Spanner, etc.}, operated as a

service by another team or by a third-party provider
o Isolated from all other users of the service

• è Only external access to data store is through
published service interface

@randyshoup linkedin.com/in/randyshoup

Events as
First-Class Construct

• “A significant change in state”
o Statement that some interesting thing occurred
o 0 | 1 | N consumers subscribe to the event, typically asynchronously

• Traditional 3-tier system
o Presentation è interface / interaction
o Application è stateless business logic
o Persistence è database

• Fourth fundamental building block
o State changes è events

@randyshoup linkedin.com/in/randyshoup

Events as
First-Class Construct

• Events represent how the real world works
o Finance
o Software development process
o Any “workflow”

@randyshoup linkedin.com/in/randyshoup

Microservices
and Events

• Events are a first-class part of a service interface

• A service interface includes
o Synchronous request-response (REST, gRPC, etc)
o Events the service produces
o Events the service consumes
o Bulk reads and writes (ETL)

• The interface includes any mechanism for getting
data in or out of the service (!)

@randyshoup linkedin.com/in/randyshoup

Extracting
Microservices

• Problem: Monolithic shared DB

• Clients
• Shipments
• Items
• Styles, SKUs
• Warehouses
• etc.

stitchfix.com Styling app Warehouse app Merch app

CS app Logistics app Payments service Profile service

@randyshoup linkedin.com/in/randyshoup

Extracting
Microservices

• Decouple applications / services from shared DB

• Clients
• Shipments
• Items
• Styles, SKUs
• Warehouses
• etc.

stitchfix.com Styling app Warehouse app Merch app

CS app Logistics app Payments service Profile service

@randyshoup linkedin.com/in/randyshoup

Extracting
Microservices

• Decouple applications / services from shared DB

Styling app Warehouse app

core_item

core_sku

core_client

@randyshoup linkedin.com/in/randyshoup

Extracting
Microservices

• Step 1: Create a service

Styling app Warehouse app

core_item

core_sku

core_client

client-service

@randyshoup linkedin.com/in/randyshoup

Extracting
Microservices

• Step 2: Applications use the service

Styling app Warehouse app

core_item

core_sku

core_client

client-service

@randyshoup linkedin.com/in/randyshoup

Extracting
Microservices

• Step 3: Move data to private database

Styling app Warehouse app

core_item

core_sku

client-service

core_client

@randyshoup linkedin.com/in/randyshoup

Extracting
Microservices

• Step 4: Rinse and Repeat

Styling app Warehouse app

core_sku

client-service

core_client

item-service

core_item

@randyshoup linkedin.com/in/randyshoup

Extracting
Microservices

• Step 4: Rinse and Repeat

Styling app Warehouse app

client-service

core_client

item-service

core_item

style-service

core_sku

@randyshoup linkedin.com/in/randyshoup

Extracting
Microservices

• Step 4: Rinse and Repeat

Styling app Warehouse app

client-service

core_client

item-service

core_item

style-service

core_sku

@randyshoup linkedin.com/in/randyshoup

Microservice Techniques:
Shared Data

• Problem
o Monolithic database makes it easy to leverage shared data
o Where does shared data go in a microservices world?

@randyshoup linkedin.com/in/randyshoup

Microservice Techniques:
Shared Data

• Principle: Single System of Record
o Every piece of data is owned by a single service
o That service is the canonical system of record for that data

• Every other copy is a read-only, non-authoritative
cache

@randyshoup linkedin.com/in/randyshoup

customer-service
styling-service

customer-search

billing-service

Microservice Techniques:
Shared Data

• Approach 1: Synchronous Lookup
o Customer service owns customer data
o Fulfillment service calls customer service in real time

fulfillment-service

customer-service

@randyshoup linkedin.com/in/randyshoup

Microservice Techniques:
Shared Data

• Approach 2: Async event + local cache
o Customer service owns customer data
o Customer service sends address-updated event when customer address

changes
o Fulfillment service consumes event, caches current customer address

fulfillment-servicecustomer-service

@randyshoup linkedin.com/in/randyshoup

Microservice Techniques:
Shared Data

• Approach 3: Shared metadata library
o Read-only metadata, basically immutable
o E.g., size schemas, colors, fabrics, US States, etc.

receiving-serviceitem-service

style-service

@randyshoup linkedin.com/in/randyshoup

Microservice Techniques:
Joins

• Problem
o Monolithic database makes joins very easy
o Splitting the data into separate services makes joins very hard

@randyshoup linkedin.com/in/randyshoup

Microservice Techniques:
Joins

• Approach 1: Join in Client Application
o Get a single customer from customer-service
o Query matching orders for that customer from order-service

• Best for single A, multiple Bs (1:N join)

A
B

order-history-page

customer-service order-service

Microservice Techniques:
Joins

• Many common systems do this
o Web application “mashup”

@randyshoup linkedin.com/in/randyshoup

Microservice Techniques:
Joins

• Approach 2: “Materialize the View”
o Listen to events from item-service and order-feedback-service
o Maintain denormalized join of items and order feedback in local storage

• Best for high cardinality A and B (M:N join)

Items Order Feedback

item-feedback-service
order-feedback-service

item-service

Microservice Techniques:
Joins

• Many common systems do this
o Most NoSQL approaches
o “Materialized view” in database systems
o Search engines
o Analytic systems
o Log aggregators

@randyshoup linkedin.com/in/randyshoup

Microservice Techniques:
Workflows and Sagas

• Problem
o Monolithic database makes transactions across multiple entities easy
o Splitting data across services makes transactions very hard

@randyshoup linkedin.com/in/randyshoup

Microservice Techniques:
Workflows and Sagas

• Transaction è Saga
o Model the transaction as a state machine of atomic events

• Reimplement as a workflow

• Roll back by applying compensating operations in
reverse

A B C D

A B C D

@randyshoup linkedin.com/in/randyshoup

Microservice Techniques:
Workflows and Sagas

• Many common systems do this
o Payment processing
o Expense approval
o Any multi-step workflow

@randyshoup linkedin.com/in/randyshoup

Microservice Techniques:
Workflows and Sagas

• Ideal use for Functions as a Service (“Serverless”)
o Very lightweight logic
o Stateless
o Triggered by an event

A B C D

A B C D

ƛ

ƛ

ƛ

ƛ

ƛ

ƛ

ƛ

ƛ

@randyshoup linkedin.com/in/randyshoup

Modern Software
Development

TDD and
Continuous

Delivery

DevOpsMicroservices

Small
Teams

Thanks!
• Stitch Fix is hiring!

o www.stitchfix.com/careers
o Based in San Francisco
o Hiring everywhere!
o More than half remote, all across US
o Application development, Platform engineering,

Data Science

• Please contact me
o @randyshoup
o linkedin.com/in/randyshoup

