
What Came First?
The Ordering of Events

 in Systems

@kavya719

kavya

the design of
concurrent systems

 Slack architecture on AWS

systems with multiple independent actors.

nodes
in a distributed system.

threads
in a multithreaded program.

concurrent actors

user-space or system threadsthreads

R

W

R

W

func main() {
for {

if len(tasks) > 0 {
task := dequeue(tasks) 
process(task)

}
}

}

user-space or system threadsthreads
var tasks []Task

multiple threads:
// Shared variable
var tasks []Task

func worker() {
for len(tasks) > 0 {

task := dequeue(tasks)
process(task)

}
}

func main() {
// Spawn fixed-pool of worker threads. 
startWorkers(3, worker)

// Populate task queue.
for _, t := range hellaTasks { 
 tasks = append(tasks, t)
}

}

R

W
R

W

g2g1

“when two+ threads concurrently access a shared
memory location, at least one access is a write.”

data race

…many threads provides concurrency,
may introduce data races.

nodes processes i.e. logical nodes 
(but term can also refer to machines i.e. 
physical nodes).

communicate by message-passing i.e. 
connected by unreliable network,  
no shared memory.

are sequential.

no global clock.

distributed key-value store. 
three nodes with master and two replicas.

M

R R

cart: [apple crepe, 
 blueberry crepe]

cart: []

ADD apple crepe
userX

ADD blueberry crepe
userY

distributed key-value store. 
three nodes with three equal replicas.
read_quorum = write_quorum = 1.
eventually consistent.

cart: []

N2 N3

N1cart: [apple crepe]

ADD apple crepe
userX

cart: [blueberry crepe]

ADD blueberry crepe
userY

…multiple nodes accepting writes  
provides availability,

may introduce conflicts.

given we want
concurrent systems,
we need to deal with

data races, 
conflict resolution.

riak:
distributed

key-value store

channels:
Go concurrency primitive

stepping back:
similarity, 

meta-lessons

riak
a distributed datastore

riak
• Distributed key-value database: 
// A data item = <key: blob> 
{“uuid1234”: {“name”:”ada”}} 

• v1.0 released in 2011. 
Based on Amazon’s Dynamo.

• Eventually consistent: 
uses optimistic replication i.e.  
replicas can temporarily diverge,  
will eventually converge. 

• Highly available: 
data partitioned and replicated,  
decentralized, 
sloppy quorum.

] AP system
(CAP theorem)

cart: []

N2 N3

N1cart: [apple crepe]

cart: [blueberry crepe]

ADD apple crepe ADD blueberry crepe

cart: [apple crepe]

N2 N3

N1

cart: [date crepe]

UPDATE to date crepe

conflict
resolution

causal updates

how do we determine
causal vs. concurrent

updates?

{ cart : [A] }

N1

N2

N3

userY

{ cart : [B] } userX

{ cart : [A]}
userX

{ cart : [D]}

A B
C D

concurrent events?

A: apple
B: blueberry
D: date

N1

N2

N3

A B
C D

concurrent events?

A B
C D

N1

N2

N3

A, C:
not concurrent — same sequential actor

A B
C D

N1

N2

N3

A, C:
not concurrent — same sequential actor

C, D:
not concurrent — fetch/ update pair

happens-before
X ≺ Y IF one of:

— same actor
— are a synchronization pair
— X ≺ E ≺ Y

across actors.

IF X not ≺ Y and Y not ≺ X ,
concurrent!

orders events

Formulated in Lamport’s  
Time, Clocks, and the
Ordering of Events paper
in 1978.

establishes causality and
concurrency.

(threads or nodes)

 A ≺ C (same actor)
 C ≺ D (synchronization pair)
So, A ≺ D (transitivity)

causality and concurrency

A B
C D

N1

N2

N3

…but B ? D 
 D ? B
 So, B, D concurrent!

A B
C D

N1

N2

N3

causality and concurrency

A B
C D

N1

N2

N3

{ cart : [A] }
{ cart : [B] }

{ cart : [A]} { cart : [D]}

A ≺ D 
D should update A

  
B, D concurrent

B, D need resolution

how do we implement
happens-before?

0 0 1

0 0 0

n1 n2 n3

0 0 0 0 0 0

n1 n2 n3 n1 n2 n3

n1 n2 n3

vector clocks
means to establish happens-before edges.

1 0 0

0 0 0

n1 n2 n3

0 0 0

1 0 0

2 0 0

0 0 0

0 0 1

n1 n2 n3 n1 n2 n3

n1 n2 n3

vector clocks
means to establish happens-before edges.

0 0 0

n1 n2 n3

0 0 0

1 0 0

2 0 0

0 0 0

0 0 1

0 1 0

n1 n2 n3 n1 n2 n3

n1 n2 n3

vector clocks
means to establish happens-before edges.

0 0 0

2 1 0

n1 n2 n3

0 0 0

1 0 0

2 0 0

0 0 0

0 0 1

n1 n2 n3 n1 n2 n3

n1 n2 n3

vector clocks
means to establish happens-before edges.

max ((2, 0, 0),
(0, 1, 0))

0 0 0

2 1 0

n1 n2 n3

0 0 0

1 0 0

2 0 0

0 0 0

0 0 1

n1 n2 n3 n1 n2 n3

n1 n2 n3

vector clocks
means to establish happens-before edges.

max ((2, 0, 0),
(0, 1, 0))

happens-before comparison: X ≺ Y iff VCx < VCy

A B
C D

N1

N2

N3

1 0 0

0 0 1

2 0 0

2 0 0

2 1 0

1 0 0

1 0 0

2 1 0

So, A ≺ D

VC at D:
VC at A:

A B
C D

N1

N2

N3

1 0 0

0 0 1

2 0 0

2 0 0

2 1 0

1 0 0

0 0 1

2 1 0VC at D:
VC at B:

So, B, D concurrent

causality tracking in riak

GET, PUT operations on a key pass around a casual context object,
that contains the vector clocks.

Therefore, able to detect conflicts.

a more precise form, 
“dotted version vector”

Riak stores a vector clock with each version of the data.

2 1 0

2 0 0

n1 n2

max ((2, 0, 0),
(0, 1, 0))

…what about resolving those conflicts?

causality tracking in riak

GET, PUT operations on a key pass around a casual context object,
that contains the vector clocks.

a more precise form, 
“dotted version vector”

Riak stores a vector clock with each version of the data.

Therefore, able to detect conflicts.

conflict resolution in riak
Behavior is configurable. 
Assuming vector clock analysis enabled: 

• last-write-wins  
i.e. version with higher timestamp picked.

• merge, iff the underlying data type is a CRDT

• return conflicting versions to application  
riak stores “siblings” or conflicting versions, 
returned to application for resolution.

return conflicting versions to application:

0 0 1

2 1 0D: { cart: [“date crepe”] }
B: { cart: [“blueberry crepe”] }
Riak stores both versions

next op returns both to application

application must resolve conflict

{ cart: [“blueberry crepe”, “date crepe”] }

2 1 1

which creates a causal update
{ cart: [“blueberry crepe”, “date crepe”] }

…what about resolving those conflicts?

doesn’t
(default behavior).

instead, exposes happens-before graph
to the application for conflict resolution.

 riak:

uses
vector clocks

to track causality and conflicts.

exposes
happens-before graph

to the user for conflict resolution.

channels
Go concurrency primitive

R

W
R

W

g2g1multiple threads:
// Shared variable
var tasks []Task

func worker() {
for len(tasks) > 0 {

task := dequeue(tasks)
process(task)

}
}

func main() {
// Spawn fixed-pool of worker threads. 
startWorkers(3, worker)

// Populate task queue.
for _, t := range hellaTasks { 
 tasks = append(tasks, t)
}

}

“when two+ threads concurrently access a shared
memory location, at least one access is a write.”

data race

specifies when an event happens before another.

memory model

 X ≺ Y IF one of:

— same thread
— are a synchronization pair
— X ≺ E ≺ Y

IF X not ≺ Y and Y not ≺ X ,
concurrent!

x = 1
print(x)

X
Y

unlock/ lock on a mutex,
send / recv on a channel,

spawn/ first event of a thread.
etc.

 The unit of concurrent execution: goroutines

 user-space threads 

 use as you would threads  
 > go handle_request(r)

 Go memory model specified in terms of goroutines
 within a goroutine: reads + writes are ordered
 with multiple goroutines: shared data must be
synchronized…else data races!

goroutines

The synchronization primitives are:

 mutexes, conditional vars, … 
 > import “sync”  
 > mu.Lock()

 atomics 
 > import “sync/ atomic"  
 > atomic.AddUint64(&myInt, 1)

 channels

synchronization

“Do not communicate by sharing memory;  
 instead, share memory by communicating.”

 standard type in Go — chan
 safe for concurrent use.

 mechanism for goroutines to communicate, and synchronize.

 Conceptually similar to Unix pipes:  
 
 > ch := make(chan int) // Initialize 
 > go func() { ch <- 1 } () // Send 
 > <-ch // Receive, blocks until sent. 

channels

// Shared variable
var tasks []Task

func worker() {
for len(tasks) > 0 {

task := dequeue(tasks)
process(task)

}
}

func main() {
// Spawn fixed-pool of workers. 
startWorkers(3, worker)

// Populate task queue.
for _, t := range hellaTasks { 
 tasks = append(tasks, t)
}

}

want:

main:
* give tasks to workers.

worker:
* get a task.
* process it.
* repeat.

var taskCh = make(chan Task, n)
var resultCh = make(chan Result)

func worker() {
for {

// Get a task.
t := <-taskCh
process(t) 
// Send the result.
resultCh <- r

}
}

func main() {
// Spawn fixed-pool of workers. 
startWorkers(3, worker)

// Populate task queue.
for _, t := range hellaTasks { 
 taskCh <- t
}

// Wait for and amalgamate results.
var results []Result
for r := range resultCh {

results = append(results, r)
}

}

// Shared variable
var tasks []Task

func worker() {
for len(tasks) > 0 {

task := dequeue(tasks)
process(task)

}
}

func main() {
// Spawn fixed-pool of workers. 
startWorkers(3, worker)

// Populate task queue.
for _, t := range hellaTasks { 
 tasks = append(tasks, t)
}

}

]

]

mu

mu

] mu

…but workers can exit early.

mutex?

want:

worker:
* wait for task
* process it
* repeat

main:
* send tasks

main
worker

send task
wait for task

process

recv task

channel semantics 
(as used):

send task to happen before worker runs.

…channels allow us to express
happens-before constraints.

 channels:

allow, and force, the user
to express

happens-before
constraints.

stepping back…

first principle: 
happens-before

riak:
distributed

key-value store

channels:
Go

concurrency primitive

surface happens-before to the user

similarities

meta-lessons

new technologies
cleverly decompose

into
old ideas

the “right” boundaries
for abstractions

are flexible.

@kavya719

≺
happens-before

riak channels

https://speakerdeck.com/kavya719/what-came-first

https://speakerdeck.com/kavya719/what-came-first

nodes in Riak:
> virtual nodes (“vnodes”)
> key-space partitioning by consistent hashing,1 vnode per partition. 
> sequential because Erlang processes, use message queues.  

replicas: 
> N, R, W, etc. configurable by key.
> on network partition, defaults to sloppy quorum w/ hinted-handoff.

conflict-resolution:
> by read-repair, active anti-entropy.

riak: a note (or two)…

riak: dotted version vectors
problem with standard vector clocks: false concurrency. 
 
userX: PUT “cart”:”A”, {} —> (1, 0); “A”
userY: PUT “cart”:”B”, {} —> (2, 0); [“A”, “B”]
userX: PUT “cart”:”C”, {(1, 0); “A”} —> (1, 0) !< (2, 0) —> (3, 0); [“A”, “B”, “C”] 
This is false concurrency; leads to “sibling explosion”. 
 
dotted version vectors

fine-grained mechanism to detect causal updates. 
decompose each vector clock into its set of discrete events, so:  
userX: PUT “cart”:”A”, {} —> (1, 0); “A”
userY: PUT “cart”:”B”, {} —> (2, 0); [(1, 0)->”A”, (2, 0)->”B”]
userX: PUT “cart”:”C”, {} —> (3, 0); [(2, 0)->”B”, (3, 0)->”C”]

riak: CRDTs
Conflict-free / Convergent / Commutative Replicated Data Type 

> data structure with property:  
replicas can be updated concurrently without coordination, and  
it’s mathematically possible to always resolve conflicts.
 
> two types: op-based (commutative) and state-based (convergent).
 
> examples: G-Set (Grow-Only Set), G-Counter, PN-Counter  
 
> Riak DT is state-based CRDTs.

ch := make(chan int, 3)

channels: implementation

nil

nil

 buf

sendq

recvq

lock

...

waiting senders

waiting receivers

ring buffer

mutex

hchan

ch <- t1

g1

ch <- t4

ch <- t2

ch <- t3

nil
nil

nil

 buf

sendq

recvq

lock

g1

 buf

sendq

recvq

lock

ch <- t1

g1

 buf

sendq

recvq

lock

g1
nil

<-ch

g2

 buf

sendq

recvq

lock

nil
nil

<-ch

g2

g1

 buf

sendq

recvq

lock

nil
nil

<-ch

g2g1

ch <- t4
 buf

sendq

recvq

lock

nil
nil

A

B

C

D

W

send

R

g1 g2

recv

// Shared variable
var count = 0
var ch = make(chan bool, 1)

func setCount() {
count++
ch <- true

}

func printCount() {
<- ch 
print(count)

}

go setCount() 
go printCount()

B ≺ C 
So, A ≺ D

1. send happens-before corresponding receive

2. nth receive on a channel of size C happens-before
n+Cth send completes.

var maxOutstanding = 3
var taskCh = make(chan int, maxOutstanding)

func worker() {
for {

t := <-taskCh
processAndStore(t)

}
}

func main() {
go worker() 

tasks := generateHellaTasks()
for _, t := range tasks {

taskCh <- t
}

}

If channel empty: 
receiver goroutine paused; 
resumed after a channel send occurs.
 
If channel not empty: 
receiver gets first unreceived element 
i.e. buffer is a FIFO queue.

Sends must have completed due to mutex.

1. send happens-before corresponding receive.

“2nd receive happens-before 5th send.” 

 

2. nth receive on a channel of size C happens-before
n+Cth send completes.

send #3 can occur.
send #4 can occur after receive #1.
send #5 can occur after receive #2.

Fixed-size, circular buffer.

2. nth receive on a channel of size C happens-before
n+Cth send completes.

If channel full: 
sender goroutine paused; 
resumed after a channel recv occurs.
 
If channel not empty: 
receiver gets first unreceived element 
i.e. buffer is a FIFO queue.

Send of that element must have completed due to  
channel mutex

