
Manoj Singh
Big Data & Streams Architect
manoj.singh101@ibm.com

IBM Streams
In-Motion Analytics Platform @IBM

© 2017 IBM Corporation

Agenda

§ Streaming Problems

§ Introduction to IBM Streams

§ Solutions using IBM Streams

2

© 2017 IBM Corporation

Streaming Problems

3

Variety Data in Many Forms - Structured, unstructured, text, multimedia
Data from Many Sources – Sensors, DB, Routers, Logs, Cameras, Medical
Devices

Velocity Data in Motion – Unbounded stream, never stops, continuous stream of
incremental analytics and output results, keep up with ingest data rates

Volume Data at Rest - Scale from terabytes to zettabytes, growing continuously, too big to
store and process

Veracity Data in Doubt - Uncertainty due to data inconsistency & incompleteness,
ambiguities, latency, deception, model approximations

© 2017 IBM Corporation

Streaming Problems - cont’d

4

Low Latency Deliver insights with microsecond latencies, Information can be stale in seconds,
maximize end-to-end throughput, and minimize processing and communication
latency.

Resiliency Need to be always up, highly available, fault tolerant, seamless automatic recovery
required, information loss while application is down

Consistency Guaranteed processing, need to cope with data loss, corruption, reordering, state
management

Agility Single instance can support multiple applications, Support multi-team
development, Incremental development and deployment

Resource
Adaptation

Should be able to optimize resources, reconfigure hardware, repurpose resources
to optimize processing

© 2017 IBM Corporation

Agenda

§ Streaming Problems

§ Introduction to IBM Streams

§ Solutions using IBM Streams

5

© 2017 IBM Corporation6 6

Stream Computing Illustrated

directory:
”/img"

filename:
“farm”

directory:
”/img"
filename:
“bird”

directory:
”/opt"

filename:
“java”

directory:
”/img"

filename:
“cat”

tuple

height:
640

width:
480

data:

height:
1280

width:
1024

data:

height:
640

width:
480

data:

© 2017 IBM Corporation7

Terminology
§ Application

• Data flow graph of operator instances connected to
each other via stream connections

§ Operator
• Reusable stream analytic

• Input ports: receives data / Output ports: produces data
• Source: No input ports / Sink: No output ports

§ Operator Instance
• A specific instantiation of an operator

§ Stream
• Continuous series of tuples, generated by an operator instance’s output port

§ Stream connection
• A stream connected to a specific operator instance input port

§ PE
• A runtime process that executes a set of operator instances

§ Job
• An application instance running on a set of hosts

(stream<Type> A) as O1 = MySrc() {}
() as O2 = MySink(A) {}
() as O3 = MySink(A) {}

A

stream A
stream
connection

O1
MySrc

O2
MySink

O3
MySink

© 2017 IBM Corporation

Composing a Flow Graph with Stream Definitions

8

composite POS_TxHandling
{

graph
stream<…> POS_Transactions = TCPSource() {…}
stream<…> Sales = Operator1(POS_Transactions) {…}
stream<…> TaxableSales = Operator2(Sales) {…}
stream<…> TaxesDue = Operator3(TaxableSales) {…}
() as Sink1 = TCPSink(TaxesDue) {…}
stream<…> Deliveries = TCPSource() {…}
stream<…> Inventory = Operator4(Sales;Deliveries) {…}
stream<…> Reorders = Operator5(Inventory) {…}
() as Sink2 = TCPSink(Reorders) {…}

}

Composite POS_TxHandling
TaxableSalesOperator

2
TaxesDueOperator

3
TCP-
Sink

Deliveries Inventory ReordersOperator
5

TCP-
Sink

TCP-
Source

Operator
4

Operator
1

TCP-
Source

POS_Transactions

© 2017 IBM Corporation

From Building Blocks to Running Jobs

§ Streams application graph:

§ Each complete application is a potentially deployable job

§ Jobs are deployed to a Streams runtime environment
– known as a Streams Instance

§ An instance can include a single host (hardware)

§ Or multiple hosts

9

Streams instance

OP

OP

Src

Src

Sink

Sink

OP

host
host host

host
host

host host
host

© 2017 IBM Corporation

Runtime Components

10

Domain [SRM, SAM, SWS, AAS, Scheduler]

Instance

Host
[HC]

Host
[HC]

Job

PE PE

PE

Stream 2

Stream 4

Stream 5

operator
Stream 1

© 2017 IBM Corporation

Streams IDE

© 2017 IBM Corporation

Streams Console – Metrics

12

© 2017 IBM Corporation13

Streaming Analytics in Action

Stock Market
§ Impact of weather on securities prices
§ Analyze market data at ultra-low latencies

Fraud Prevention
§ Detecting multi-party fraud
§ Real time fraud prevention

e-Science
§ Space weather prediction
§ Detection of transient events
§ Synchrotron atomic research

Transportation
§ Intelligent traffic

management

Manufacturing
§ Process control for

microchip fabrication

Natural Systems
§ Wildfire management
§ Water management

Telephony
§ CDR processing
§ Social analysis
§ Churn prediction
§ Geomapping

Other
§ Smart Grid
§ Text analysis
§ Who’s talking to whom?
§ ERP for commodities
§ FPGA acceleration

§ Real-time multimodal surveillance
§ Situational awareness
§ Cyber security detection

Law Enforcement,
Defense & Cyber Security

Health & Life Sciences
§ Neonatal ICU monitoring
§ Epidemic early warning

system
§ Remote healthcare

monitoring

© 2017 IBM Corporation

Speech to
Text

Listens side by side to
agent-customer conversation

Intent
Detection

Comprehends the discussion
and classifies the intent

Scoring & Next
Best Action
Identifies proactive and

reactive relevant content

Contextual
Assist

Delivers cognitive agent assist

Verizon uses IBM
Streams and cognitive
analytics to deliver
dynamic contextual
content management

© 2017 IBM Corporation

TWC and Streams: Architecture to Handle PWS Growth

Personal Weather Stations

IBM Streams

400+ Million
Consumers

1) Data ingestion
2) Data cleansing
3) 5 minute aggregation
4) 1 day aggregation
5) 1 week aggregation
6) Parallel writing to data lake

© 2017 IBM Corporation

Agenda

§ Streaming Problems

§ Introduction to IBM Streams

§ Solutions using IBM Streams

16

© 2017 IBM Corporation17

X86 Host X86 Host X86 Host X86 Host X86 Host

§ Runs on commodity hardware
• From single node to blade to high performance multi-rack clusters

§ Adapts to changes :

High Availability: Restart, Fault Tolerance

© 2017 IBM Corporation18

X86 Host X86 Host X86 Host X86 Host X86 Host

§ Runs on commodity hardware
• From single node to blade to high performance multi-rack clusters

§ Adapts to changes :
• In workloads

High Availability: Restart, Fault Tolerance - cont’d

© 2017 IBM Corporation19

X86 Host X86 Host X86 Host X86 Host X86 Host

§ Runs on commodity hardware
• From single node to blade to high performance multi-rack clusters

§ Adapts to changes :
• In workloads

High Availability: Restart, Fault Tolerance - cont’d

© 2017 IBM Corporation20

X86 Host X86 Host X86 Host X86 Host X86 Host

§ Runs on commodity hardware
• From single node to blade to high performance multi-rack clusters

§ Adapts to changes :
• In workloads
• In resources

High Availability: Restart, Fault Tolerance - cont’d

© 2017 IBM Corporation21

X86 Host X86 Host X86 Host X86 Host X86 Host

§ Runs on commodity hardware
• From single node to blade to high performance multi-rack clusters

§ Adapts to changes :
• In workloads
• In resources

High Availability: Restart, Fault Tolerance - cont’d

© 2017 IBM Corporation

- Use relocatable and restartable properties for automatic fail over

- Servers added to cluster using tags

- Reserve resources for specific purpose by tags

- User specified placement constraints

- absolute host location

- IP, Name, Pool

- Relative host or partition constraint

- hostColocation, hostExlocation, hostIsolation

- partitionColocation, partitionExlocation, partitionIsolation

22

Fault Tolerance, Resource Adaptation

stream<int64 count> outStream = Custom(inStream) {
.
.

config
checkpoint: periodic(2.0);
restartable : true;
relocatable : true;
placement: partitionColocation(“Grp1"),

host(Pool1[0]);

© 2017 IBM Corporation

Parallelism : Automated Fusion and Threading

§ Profile driven fusion at compile time

§ Automatic fusion at submission time based on the resources available

– reduce the number of PE processes, reduce load on a system, improve default performance

§ Manual placement constraints precedence

§ Manual/Dynamic/Automatic threading at runtime

– Determine pool of worker threads and dynamically adjust as the throughput and load for the application changes

23

© 2017 IBM Corporation

User-defined parallelism

24

Src A B C Src

A[0] B[0] C[0]

A[1] B[1] C[1]

Logical Physical

composite CoOp1(input In) {
graph

stream<Type> A = Functor(In) {
config placement: hostColocation("AB" + (rstring)getChannel()),

stream<Type> B = Functor(A) {
config placement: hostColocation("AB" + (rstring)getChannel()); }

stream<Type> C = Functor(B) {
config placement: hostColocation("C" + (rstring)getChannel()); }

}
composite Main() {

graph
stream<Type> Src = Source() {}

@parallel(width=2)
() as Sink = CoOp1(Src) {}

}

Composite CoOp1

© 2017 IBM Corporation

Maintaining State in Streams - Windows, State, Checkpoints

§ State can be maintained using windows or mutable variables
§ Out of box support for windows – no code required for spatial and temporal state

management and event triggering
§ Window types

– Tumbling – Collective eviction
– Sliding – Incremental eviction
– Partitioned - multiple window with streams partitioned on some attribute, eg.

Stock data (partitioned on ticker symbol)
§ State recovery through check pointing

25

stream<int64 minValue> outStream = Aggregate(inStream) {
window inStream: sliding, count(50), count(1);
output outStream : minValue = Min(j);

}

stream<int64 count> outStream = Custom(inStream) {
logic state: mutable int64 cnt = 0;

.

.
config

checkpoint: periodic(2.0);

© 2017 IBM Corporation

Guaranteed Processing – Consistent region

26

§ Annotate a region/subgraph as consistent
§ Check pointing at regular intervals to save state
§ On failure, state restored and tuples replayed
§ Can have zero to many consistent regions
§ Annotations

– @consistent {trigger, period, drainTimeout, resetTimeOut, maxConsecutiveResetAttempts}

– @autonomous

© 2017 IBM Corporation

Static vs. Dynamic Composition

§ Static connections
– Fully specified at application development-time and do not change at run-time

§ Dynamic connections
– Partially specified at application development-time (Name or Properties)
– Established at run-time, as new jobs come and go

§ Dynamic application composition
– Incremental deployment of applications
– Dynamic adaptation of applications

27

© 2017 IBM Corporation

Flow control – Punctuation, Throttling, Feedback loops

§ Punctuation: Control messages to logical partition streams, operators can
execute logic based on appearance of punctuation

§ Throttle Operator : used to pace a stream, control flow rate

§ Switch Operator:
– used to temporarily stop tuples from flowing
– used to hold tuples until a downstream operator is ready to process them
– Has control port which is triggered from downstream operator

28

Stream<….> outStream = Operator1(inStream) {
….
onTuple inStream: {…}
onPunct inStream : {…}

}

Src Switch B C

© 2017 IBM Corporation

Managing & Monitoring Health

- Rest API

- JMX API

- Command line tool

- Customizable GUI

- Color coded Visual graph of metrics and topology

- A number of metrics and counters available

- CPU, Memory, Tuple in/out rate, Congestion, Health, Flow rate, Byte rate,
punctuation count, tuples dropped, etc

29

© 2017 IBM Corporation

Reference Resources

§ Toolkits, Samples, Documentation
https://ibmstreams.github.io/

§ Developer Community
https://developer.ibm.com/streamsdev/

§ Product Page
https://www.ibm.com/us-en/marketplace/stream-computing

30

© 2017 IBM Corporation

Questions?

© 2017 IBM Corporation32

