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Getting More Sleep 
One SQS Message at a Time
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Who we are?

Bob Evans Jason Sorensen
Director, Software Engineering Lead Data Scientist, 

Architect for the Omni-ETL project
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What we do?

● fastest-growing cloud email API service.
● delivers over 25% of the world’s non-spam emails.
● only independent email service build natively for the cloud on AWS.
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Event Processing
● Core email platform generates JSON events for anything related to an email

○ injection, delivery, bounce, spam complaint, open, click, etc
○ Streams to RMQ exchange via the event hose

● Metrics ETL/API
○ Strip down data for long term aggregate and time series reporting
○ Stored in Vertica

● Message-Events ETL/API
○ Enriches, batches and stores raw JSON data
○ Stored in Vertica

● Webhooks ETL
○ Enriches, batches and transmits data
○ POST to customer’s HTTPS endpoints

● Suppression ETL/API
○ Transforms certain bounces, spam complaints 
○ Stored in Vertica (now uses DynamoDB)
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Architecture Per Server
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Headaches

● Architecture was aligned with our on-premise product Momentum
● Under utilized node.js processes during non-peak
● Too many node.js processes on too many servers

○ Hard to troubleshoot and fix problems fast
● Expensive EBS disk volumes needed for RabbitMQ
● Fire drills during queue backups 
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What were the problem constraints?

● Easier to manage
● Cost effective
● Auto-scalable
● Reduce risks during queue backups
● Fault tolerant to any service outage
● Near Real-Time visibility of data
● Backwards compatible 
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Omni-ETL
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ETL Module Coordination
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RabbitMQ vs SQS
● RabbitMQ

○ Single uncompressed raw “event” per message published to exchange
○ One queue per data consumer

■ Requires persistent storage per queue for reliability
■ Data is copied onto disk
■ Queues are FIFO
■ Analogous to TCP

○ Pushes data to consumer
● SQS

○ Compressed batches of 750 events published to queue
○ Single queue for all consumers

■ Not guaranteed FIFO
■ At least once delivery
■ Analogous to UDP

○ Consumer must poll for data



12

SQS Event Batching
● SQS Publishes Limited to 256 KB
● Speed Testing 28,000 Events Published to RabbitMQ vs SQS

● SQS Cost Per For One Email’s Events: $.0000000095 ($9.50 per Billion) 

Publish Method Time

RabbitMQ Single Events Sync 8.8s

SQS Single Events Async 143s

SQS 10-Event Batch Sync 58.4s

SQS 10-Event Batch Async 23.5s

SQS 10x100 Compressed Batch Async 7.6s

SQS 1000 Compressed Batch Async 4.0s
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Transforming ETL Code into Omni

● Created unified “etl-base” module
● Extractor for SQS. Extractor for legacy RabbitMQ service
● Extractor feeds into consumer modules

○ One stand alone module for legacy ETL processes
○ SQS extractor feeds into many consumer modules
○ Consumer calls the transformer then batches
○ After batch consumer calls loader
○ Loader calls callback function triggers extractor acknowledgement

● Shared Loader Types for writing to Vertica, HTTP, SQS, etc
● Each module has a unique transformer
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Architecture Choices

● SQS 
○ 750 raw events per batch = faster, cheaper
○ Much cheaper than persistent (“safe”) RabbitMQ
○ Also useful as a delay queue
○ Abstractably analogous to RabbitMQ operation for ETLs

● Redis for state management
○ Previously tried node child process based coordination
○ Used LevelDB for some old architecture
○ ElastiCache Redis is cost-effective and broadly applicable
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Rollout 

● 24/7/365 service, 0 downtime 
● Nothing beats testing in production….sensibly

○ dual load events to RMQ and SQS
○ standup test schema
○ blackholed webhooks
○ verify counts between live and test schema are aligned

● Ensured no lost or duplicated event data
○ cutover times that load/drop data on relevant architectures

● Monitoring and alerts in place well before cutover
● War room collaboration during rollout for a customer
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Savings

● OLD: 1099 node.js processes across 157 servers
● NEW: 161 node.js process across 5 servers
● $7,000 month on EBS disks
● reduced servers and sizes of EC2 instances
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Brand new world

Before
● Downstream backups 

cause queues to back up, 
resulting in delayed event 
data and severely impacting 
timely email delivery

After
● Downstream backups 

cause queues to back up , 
resulting in delayed event 
data, but other data keeps 
flowing 



18

Takeaways

● Service based queues take stress off your infrastructure
● Running features dark in production best performance test
● Try different models to reduce costs on SQS
● Re-evaluate your stack quarterly
● Be incremental in your changes
● Have a well defined rollout plan

○ involve all relevant teams
○ explain the impacts of monitoring and alerting



19

Questions?


