
1

Bob Evans & Jason Sorensen

Getting More Sleep
One SQS Message at a Time

2

Who we are?

Bob Evans Jason Sorensen
Director, Software Engineering Lead Data Scientist,

Architect for the Omni-ETL project

3

What we do?

● fastest-growing cloud email API service.
● delivers over 25% of the world’s non-spam emails.
● only independent email service build natively for the cloud on AWS.

4

Event Processing
● Core email platform generates JSON events for anything related to an email

○ injection, delivery, bounce, spam complaint, open, click, etc
○ Streams to RMQ exchange via the event hose

● Metrics ETL/API
○ Strip down data for long term aggregate and time series reporting
○ Stored in Vertica

● Message-Events ETL/API
○ Enriches, batches and stores raw JSON data
○ Stored in Vertica

● Webhooks ETL
○ Enriches, batches and transmits data
○ POST to customer’s HTTPS endpoints

● Suppression ETL/API
○ Transforms certain bounces, spam complaints
○ Stored in Vertica (now uses DynamoDB)

5

Architecture Per Server

Event
Producer

RabbitMQ

HTTPS
CONSUMER

VERTICA

Node.js ETL processes

Topic Exchange

Queue

Queue

Queue

Queue

METRICS ETL

MESSAGE EVENTS ETL

SUPPRESSION ETL

WEBHOOKS ETL

6

Headaches

● Architecture was aligned with our on-premise product Momentum
● Under utilized node.js processes during non-peak
● Too many node.js processes on too many servers

○ Hard to troubleshoot and fix problems fast
● Expensive EBS disk volumes needed for RabbitMQ
● Fire drills during queue backups

7

What were the problem constraints?

● Easier to manage
● Cost effective
● Auto-scalable
● Reduce risks during queue backups
● Fault tolerant to any service outage
● Near Real-Time visibility of data
● Backwards compatible

8

Omni-ETL

9

Event
Batcher

Omni-ETL Shared Architecture

Event
Producer

SQS

HTTPS
CONSUMER

VERTICA

Omni ETL Process

Queue EXTRACTOR

METRICS
MODULE

MESSAGE EVENTS
MODULE

SUPPRESSION
MODULE

WEBHOOKS
MODULE

10

ETL Module Coordination

DATA
CONSUMER

ELASTICACHE
REDIS

Event
Batch

EXTRACTOR

ETL MODULE

SQS

Queue

11

RabbitMQ vs SQS
● RabbitMQ

○ Single uncompressed raw “event” per message published to exchange
○ One queue per data consumer

■ Requires persistent storage per queue for reliability
■ Data is copied onto disk
■ Queues are FIFO
■ Analogous to TCP

○ Pushes data to consumer
● SQS

○ Compressed batches of 750 events published to queue
○ Single queue for all consumers

■ Not guaranteed FIFO
■ At least once delivery
■ Analogous to UDP

○ Consumer must poll for data

12

SQS Event Batching
● SQS Publishes Limited to 256 KB
● Speed Testing 28,000 Events Published to RabbitMQ vs SQS

● SQS Cost Per For One Email’s Events: $.0000000095 ($9.50 per Billion)

Publish Method Time

RabbitMQ Single Events Sync 8.8s

SQS Single Events Async 143s

SQS 10-Event Batch Sync 58.4s

SQS 10-Event Batch Async 23.5s

SQS 10x100 Compressed Batch Async 7.6s

SQS 1000 Compressed Batch Async 4.0s

13

Transforming ETL Code into Omni

● Created unified “etl-base” module
● Extractor for SQS. Extractor for legacy RabbitMQ service
● Extractor feeds into consumer modules

○ One stand alone module for legacy ETL processes
○ SQS extractor feeds into many consumer modules
○ Consumer calls the transformer then batches
○ After batch consumer calls loader
○ Loader calls callback function triggers extractor acknowledgement

● Shared Loader Types for writing to Vertica, HTTP, SQS, etc
● Each module has a unique transformer

14

Architecture Choices

● SQS
○ 750 raw events per batch = faster, cheaper
○ Much cheaper than persistent (“safe”) RabbitMQ
○ Also useful as a delay queue
○ Abstractably analogous to RabbitMQ operation for ETLs

● Redis for state management
○ Previously tried node child process based coordination
○ Used LevelDB for some old architecture
○ ElastiCache Redis is cost-effective and broadly applicable

15

Rollout

● 24/7/365 service, 0 downtime
● Nothing beats testing in production….sensibly

○ dual load events to RMQ and SQS
○ standup test schema
○ blackholed webhooks
○ verify counts between live and test schema are aligned

● Ensured no lost or duplicated event data
○ cutover times that load/drop data on relevant architectures

● Monitoring and alerts in place well before cutover
● War room collaboration during rollout for a customer

16

Savings

● OLD: 1099 node.js processes across 157 servers
● NEW: 161 node.js process across 5 servers
● $7,000 month on EBS disks
● reduced servers and sizes of EC2 instances

17

Brand new world

Before
● Downstream backups

cause queues to back up,
resulting in delayed event
data and severely impacting
timely email delivery

After
● Downstream backups

cause queues to back up ,
resulting in delayed event
data, but other data keeps
flowing

18

Takeaways

● Service based queues take stress off your infrastructure
● Running features dark in production best performance test
● Try different models to reduce costs on SQS
● Re-evaluate your stack quarterly
● Be incremental in your changes
● Have a well defined rollout plan

○ involve all relevant teams
○ explain the impacts of monitoring and alerting

19

Questions?

