
The Developer’s
Survival Guide to Email

BY BRENT SLEEPER

2

The Developer’s Survival Guide to Email

“I Knew How to Validate an Email
Address Until I Read the RFC.”
That’s the title of a 10-year-old
blog post, but it neatly captures
the exasperation that nearly every
developer who works with email
has felt at some point. There’s
really no getting around it: email
can be a pretty strange beast with
conventions, dependencies, and
quirks unlike anything else, and
many of us have a love/hate
relationship with making it work.

We love email because it’s
ubiquitous, open, flexible, and
effective; we hate—or perhaps
have learned to treat it with a wary
respect—because getting an email
from point A to inbox B has so many
variables outside our control. In short,
it’s easy to feel like “I Knew How
Email Worked Until I Started to Build
an App that Sends Email.”

Fortunately, services like SparkPost
let developers offload the oper-
ational considerations of building
and hosting email infrastructure.
We deal with the challenges of
sending email at scale, the arcana
of sender authentication, and the
weeds of email deliverability so
you don’t have to.

But even so, if you’re building
email into your app or business
process, email presents a number
of messy details and idiosyncrasies
that turn out to be “gotchas” for
many developers. That’s why we
put together this guide: we’re big
believers in helping developers get
the most out of email, and to be
forewarned about email bugbears
is to be forearmed. So here are 10
things you might not realize about
implementing and sending email.

http://haacked.com/archive/2007/08/21/i-knew-how-to-validate-an-email-address-until-i.aspx/

3

SURVIVAL TIP #1

Email at Scale is a Horse of an Entirely Different Color

One thing that surprises a lot of devel-
opers new to building email into apps
and other systems is that email requires
a very specialized skill set, and that email
doesn’t scale uniformly—or gracefully.
With the right SMTP libraries and open
source mail servers, it’s relatively easy to
send one email, or a few emails, or even
hundreds of emails. So it’s tempting to
assume that once you’ve developed and
tested the basic aspects of generating
and transmitting a message, all you have
to do is put your code into production,
and you’re done, right?

Not even close. At a pure infrastructure
level, the very real challenges of resource
management—the processing load,
disk spooling, network I/O required to
generate and send thousands or millions
of messages at the kind of burst rates
required for near-real-time message
delivery—bogs down systems really
quickly. And scaling to handle bounces

and other deliverability signals from ISPs
around the world is a whole other can
of worms.

In short, email at scale is a highly special-
ized function that requires the expertise
of experienced email development and
operations teams to pull off well. That
reality is one reason why email delivery
services like SparkPost make so much
sense. Our elastic cloud infrastructure
won’t even blink as it delivers as much
message volume as any app or service
can generate.

By the way, if you ever run into our
founder and CTO, it’s worth asking
him about how he figured out how to
optimize performance and resource
requirements for message spooling
back in the day by keeping it entirely
in memory with zero disk I/O during
message generation and transmission.
It’s pretty great.

https://www.sparkpost.com/blog/cloud-software-architect-qa/

4

SURVIVAL TIP #2

Reaching the Inbox Can Be a Black Box

“Deliverability” is a fundamental metric
for email senders, because there’s no
chance for a recipient to open, read, and
respond to an offer if the email never
arrives. The idea of deliverability seems
straightforward. If I send 1000 emails, and
my server’s log files say 900 of those were
accepted by receiving systems, then my
deliverability is 90%. Simple, right? Yes…
but no. That’s because all your server
knows is that the receiving system took
the message, but not what was done
with it. Did it go to the inbox? The spam
folder? You don’t know, because in both
cases, the SMTP transaction is logged as
a successful “250 OK”—SMTP doesn’t
differentiate spam from legitimate email.

To complicate the issue, every ISP has its
own rules and policies for determining

which messages to accept, which to reject
outright, and which to put into a sort of
gray zone of heuristic evaluation. Because
so many spammers and other bad actors
try to game the system, these criteria are
kept highly secret by the ISPs.

Services like SparkPost give deliverability
a lot of attention, and our ISP relation-
ships and the intelligent automation of
our Adaptive Email Network make a
big difference. But, understanding that
different ISPs might treat identical emails
differently (maybe Gmail puts it in the
inbox, while Yahoo flags it as spam, for
example)—and what you can do about
it—is sometimes challenging. If you want
to learn more about improving your email
deliverability, we’ve created a number of
helpful guides all about it.

https://www.sparkpost.com/adaptive-email-network
https://www.sparkpost.com/resources/

5

SURVIVAL TIP #3

Your Email Has a Reputation

Not caring about her reputation made a
great proto-punk hit song for Joan Jett.
But, believe it or not, email senders (and
their associated IP addresses) actually
have reputations, too, and ISPs take them
very seriously. In fact, sender reputation
is one of the most important concepts in
message deliverability. Every IP address
and domain has a reputation based on
factors such as past rates of bounces and
spam reports. Domains and IP addresses
with a good reputation have a better
delivery rate, so building and maintaining
a good reputation is central to the
mission of email operations.

SparkPost’s operations and deliverability
teams are assiduous in making sure that
our shared IP addresses have great
reputations, and that’s one reason for
the messaging policy in our terms of
service. But as someone building an
app or system that uses email, you can
do a lot to affect the reputation of your
own domain. SparkPost’s guides to
improving email deliverability include
great advice for managing email reputa-
tion, including: making sure the content
you send is welcomed by recipients who
actually asked for it, taking technical
measures like email authentication, and
following best practices for the rate of
message sending, and more.

https://en.wikipedia.org/wiki/Bad_Reputation_(Joan_Jett_song)
https://www.sparkpost.com/policies
https://www.sparkpost.com/resources/

6

Just a Good Idea—It’s the Law

If there’s one thing that unites all of us that deal with email, it’s
spam. You hate spam. We hate spam. Everyone (except spam-
mers) hates spam.

But what surprises some developers new to email is that there
are some very specific guidelines that govern email that gets
sent to customers. Some of these are considered best practices
that keep customers happy and give you great results. But other
aspects actually are enforced by law.

In the U.S., there’s a law called “CAN-SPAM” that requires
all senders of commercial email enable recipients to opt out.
In Canada, the “CASL” law has stricter rules (and governs a
number of other rules about email). The European Union and
other countries have strict regulations as well.

The details of what each of these laws cover are too specific to
go into here. (Dammit, Jim, we’re developers, not lawyers!) But
a basic thing that anyone sending email for a business needs to
know is that:

	 You should only send commercial email (that means
“marketing” email, very broadly defined) to users who
specifically told you they want to receive it. (In email
parlance, that means users who have “opted in.”)

Specific types of emails like receipts that are a necessary
part of doing business with a customer are called “trans-
actional email” and get certain exemptions from some of
these rules.

SparkPost’s terms of use policies require compliance with
rules like these, and also enforce several other best prac-
tices that help ensure every email that our customers send
is a good email, not spam.

The SparkPost web site and blog have good information about
CAN-SPAM, CASL, and other email rules and best practices.

SURVIVAL TIP #4

Doing the Right Thing with Email Isn’t

https://www.sparkpost.com/glossary/can-spam
https://www.sparkpost.com/blog/casl-myths/
https://www.sparkpost.com/resources
https://www.sparkpost.com/blog/

7

SURVIVAL TIP #5

HTML Like It’s 1999

Email recipients today expect (and
respond to) emails that look like the
content on the web and in mobile apps;
there’s simply no question that HTML
rules the inbox. But what surprises just
about everyone who begins to develop
for email is just how idiosyncratic HTML
support remains in many email clients
and webmail inboxes.

Although some email clients (notably
Apple Mail, including on the iPhone)
are good to go for HTML5, others (like
Outlook) are downright terrible in their
support for modern HTML standards.
Moreover, webmail inboxes like Gmail
each have their own quirks and limitations.

As a result, email developers need to
dust off the 1999 edition of your favorite
reference guide and code to a subset
of HTML 4.

Notable limitations of coding HTML
email include:

A reliance on tables for layout

The need for inline, redundant CSS

No Z-layering or dynamic rendering
of <divs>

Unpredictable display of
background images

Limited support for web fonts

Little or no support for JavaScript,
video, animation, forms, and other
types of interactive content

Fortunately, there are ways to make devel-
oping email HTML a little less painful. A
quick Google search will turn up dozens
of practical guides to using HTML in email,
and one of our own developers recently
made life better with automatic CSS
inlining in SparkPost templates.

https://www.sparkpost.com/blog/html-vs-text-email/
https://www.google.com/?q=state+of+html+email+support
https://www.sparkpost.com/blog/automatic-css-inlining-sparkpost/

8

SURVIVAL TIP #6

Connect the Dots with Email Analytics

One of the great things about email is
that it comes with a lot of useful data.
But because email isn’t a closed system,
drawing conclusions from the data
requires a solid understanding of the
metrics available, good instrumentation,
and deductive reasoning. (For instance,
measuring whether an email reached
the inbox must be approached from
a couple different angles to get the
full picture.)

SparkPost helps get you there with
great instrumentation of our service and
messages, and we give you the kind
of tools you need to query it. Our real-
time analytics metrics dashboard reports
over 35 different metrics, and you can
customize the reporting interface to drill
down as you need.

By the way, if you really want to swim in
the sea of big data, SparkPost lets you
capture a stream of every detail of real-
time message activity with webhooks.
That’s a serious amount of information.

SparkPost’s blog and support documen-
tation are great places to start learning
more about the metrics and analytics
you can gather with email. And maybe
some quotes from Sherlock Holmes
will inspire you to make good use of
the information…

https://www.sparkpost.com/blog/email-deliverability-crash-course/
https://www.sparkpost.com/blog/webhooks-beyond-the-basics/
https://support.sparkpost.com/customer/en/portal/articles/1929895-reporting-and-analytics
http://sherlockholmesquotes.com/sherlock-holmes-on-deduction-and-deductive-reasoning/
https://www.sparkpost.com/blog/real-time-analytics-digging-into-email-metrics/

9

SURVIVAL TIP #7

Email Depends upon the Kindness of Strangers
(Or At Least the Scaffolding of Other Infrastructure)

Email as a concept predates the Internet,
and the implementation we use today was
created in the very earliest days of the
Internet. That history has two particular
ramifications. First, its architecture relies very
heavily on other core Internet infrastructure
like DNS. Second, many of the things we
take for granted as necessary in modern
systems (like security) were bolted onto
email over the years in ways that are simul-
taneously pragmatic and reflect the reality
of design-by-committee and diverse vendor
and user interests.

In short, some parts of email infrastructure
need a lot of fiddling with to make work.
Depending upon the nature of your organi-
zation, it also might require the cooperation
of other teams like systems administrators.
Here are some basic things you’ll need to
get configured to ensure your email gets
handled in the best way possible:

Basic DNS configuration, including
reverse DNS and MX records, for
sending and bounce domains

Additional DNS configuration with
special TXT records to support
authentication standards like SPF,
DKIM, and DMARC

Configuring your SMTP host with
administrative role accounts like
postmaster@ and abuse@

The SparkPost support site has concise
how-to’s for verifying sending domains,
and our blog is a great resource for
practical advice for working with standards
like DKIM and DMARC (and why, even
with its complexity, email authentication
really matters).

http://www.theverge.com/2012/5/2/2991486/ray-tomlinson-email-inventor-interview-i-see-email-being-used
https://support.sparkpost.com/customer/portal/articles/1933360-verify-sending-domains
https://www.sparkpost.com/blog/three-dkim-challenges-valimail-guest/
https://www.sparkpost.com/blog/dmarc-howto/
https://www.sparkpost.com/blog/time-for-dmarc-email-authentication/

10

SURVIVAL TIP #8

Email Is Not One Size Fits All

Think about what you have in your own email inbox: Personal
messages from co-workers or friends, sure. But what else?
Newsletters? Marketing promotions? Receipts? Password resets?
Welcome emails? We’ve all received all of the above, and more.

One of the great things about email is that it’s totally flexible.
No matter what you’re building, you can adapt email messaging
to communicate with your users. But each of these use cases
needs a different kind of email: a different template, sure, but
also a different set of practices for how you trigger, generate,
and send them.

Triggered email is what developers using SparkPost most
often are looking to build: messages generated in real time
based on an activity or data-based trigger. Sometimes trig-
gered emails are “transactional email”—something like a
receipt or a password reset. Other times, triggered emails
play more of a marketing role, like helping a user with app
onboarding steps or encouraging them to come back and do
something on your web site.

Bulk email is what a lot of us think of as “marketing
email.” Newsletters, sales announcements from a retailer,
and so on. When done right, your customers are happy
to receive these. When done wrong, they come across as
unwanted spam. Don’t be that kind of sender. Make sure
your customers opted in, and make sure you’re giving them
information they actually requested.

Understanding the differences between these types of email is a
really big topic, and it affects everything from the design of your
emails to rules about how and when they are sent. (See survival
tip #4 above for really important information about these rules.)

If you want to learn more about different types of email, check
out SparkPost’s guides to transactional email, triggered
email, and more.

https://www.sparkpost.com/resources

11

SURVIVAL TIP #9

Email Is Mobile, and Mobile Is Email

Email’s been around a really long time. So
long, in fact, that “the death of email” has
(incorrectly) been proclaimed over and
over. With the ubiquity of smart phones,
it’s an easy leap to think that social media,
text messaging, or apps have made email
on mobile devices obsolete. Of course,
those things are really important forms of
connecting with users. But the (perhaps
surprising) truth is that not only do we
send and receive more email than ever,
but a majority of email is read on iPhones,
Androids, and the like. Litmus, a company
that tracks data like this published some

striking figures about email client
market share:

54% of email is opened on mobile

26% is read in a webmail tool like Gmail

20% is read in a traditional, desktop
email client

So there’s no question that email is genu-
inely cross-platform, and that mobile is a
critical piece of that. That’s a big reason
why SparkPost offers enterprise developers
one platform and set of APIs to generate
email, SMS, and push notifications.

https://litmus.com/blog/category/stats
https://www.sparkpost.com/blog/sparkpost-features-insight-bootcamp/

12

SURVIVAL TIP #10

Make the Most of SparkPost Developer Resources

At SparkPost, #WeLoveDevelopers. Whether it’s a simple web
app or a complex enterprise business process, we make it easy
for developers at companies of all sizes to build email into
whatever you’re coding.

Want to learn more? Here are some great developer resources
to bookmark:

The SparkPost Developer Hub is a collection of resources
to help you succeed with SparkPost, including details about
our API, client libraries, and more.

The SparkPost community Slack channel is a great way
to learn from other developers using SparkPost—and
SparkPost’s own team as well.

The SparkPost support site has all the docs and technical
support you need to make the most of our product.

The SparkPost blog regularly features email tips, developer
how-tos, and sneak peeks at new product functionality.

SparkPost is on Twitter at @SparkPost and @SparkPostDev.

But the truth is, there’s no better way to learn than by trying.

SparkPost.com • 301 Howard St., Suite 1330 • San Francisco, CA 94105 • tel +1 415-578-5222 • toll free usa 877-887-3031
©2016 Guide_Developers-Survival-Guide_0716

Try SparkPost for FREE today!

https://developers.sparkpost.com/
http://slack.sparkpost.com/
http://support.sparkpost.com/
https://www.sparkpost.com/blog/
https://twitter.com/SparkPost
https://twitter.com/SparkPostDev
https://app.sparkpost.com/sign-up
https://app.sparkpost.com/sign-up

