DEMAND DRIVEN
ARCHITECTURE

KOVAS BOGUTA & DAVID NOLEN, QCON NEW YORK 2015

CLIENTS

More and more clients
everyday

Internet of Things

How to serve N clients with
1 service?

=ST SERVICE

Define logical “resources”
Client requests a resource

But client actually needs to present joined resources
Bloat resource? Multiple requests?

Incidental complexity? Mobile client latency?

SUPPLY

DRIV

=N ARCHIT

-CTUR

"You can have anything you want as long as it looks

exactly like this”

Engineering team issues

Front end team must request changes

N front end teams attacking service team

Our REST Service

THE PROBLEM

Cannot predict what clients (especially future ones) will
actually need

Cannot put all clients into lockstep with a specific

version of the APl (Synchronization is expensive)

Client applications are distributed systems (salad days
are over)

Author Jun 2, 2015, 6:59 PM
database design
hierarchical databases

make sure clear not

recommending storing data as
tree

“This has all happened betore”

DBMS

Client specities exactly what they need
Multiple clients not locked into same canned results

Batching (latency considerations)

Author Jun 2, 2015, 9:10 PM

? ? ? known unknowns
[] [] []

open questions

we’re not just going to expose SQL but
what are we going to do?

Can an endpoint provide a restrictive yet expressive
query language?

Can an endpoint evolve with clients?

Can an endpoint serve multiple tiers ot demand from a
client?

A
Z Z
A_._u_
S =
L]
ANA

TH

BIG IDEA

Represent client demand as data
Client describes demand, service fulfills
Variation captured in data, on the client

Contract between client and service

PRINCIPLES

Demand

Author Jun 2, 2015, 7:17 PM
We don’t want to decide what is a
resource and what isn’t

The payload includes a mixture of thing
which are and aren’t resources

(We should probably examine and
respond to HATEOS)

Composition

Interpretation

looking at photo album in front of lettuce bin

DEMO

[{:app/contacts
[:person/first-name]}]

[{:app/contacts
[:person/first-name]}]

[{:app/contacts
[:person/first-name]}]

|

ROUTER

[{:app/contacts
[:person/first-name]}]

|

ROUTER B QUERY

[{:app/contacts
[:person/first-name
:person/last-name
:person/address]}]

|

ROUTER B QUERY

person address

first-name

address zip-code

ROUTER

[{:app/contacts
[:person/first—-name
o

:person/last-name
{ :person/address
[:address/zip-code]}]}]

|

SUBQUERY

SUMMARY

Client specities exactly what it needs

Batched

Details of demand are easily modified

Decoupled from service implementation

File Edit Goodies Font FontSize Style

Macintosh

MPLICATIONS

USER INTERFACES

User interfaces are trees

Graphical clients that talk to traditional REST
endpoints general involve error prone reshaping code

Demand Driven Architecture can dramatically simplify
rich clients

AppView

[{:app/contacts ..}]

ContactlListView

[:person/first-name
{:person/address ..}]

AddressView

[:z1p—-code]

DEMO

[{:app/contacts
[:person/first-name
{:person/address [:zip-code]}]}]

CAVEATS

Doesn’t mean no backend
Security
Routing

Caching

-VELING UP

DATOMIC

Queries work out of the box (pull syntax)
Caching (peers)

Evolvable schema (not migrations)

Query arbitrary points in time (without logs)

Client can trivially receive change sets (transaction
report)

ELAY/GRAPHQL

FaceBook software layer over React
Monolithic application architecture

Relay/GraphQL deliver demand driven queries tor

React user interfaces

JSONGRAPH/FALCOR

NetFlix eliminated 20% ot their networking code
Can now serve many different kinds of clients
Unlike Facebook microservices based design

Still, same benefits - phones, tablets, browsers, and
set-top boxes can get exactly what they neead

ECAP

The pace of client innovation is only accelerating

Demand driven architecture guides us toward
evolvable systems

Can remove incidental complexity from client and
server by meeting on simple data

Relay/GraphQL (FaceBook)

JSONGraph/Falkor (NetFlix)

Datomic

QUESTIONS?

