
Multicore Synchronization
a pragmatic introduction

Speaker (@0xF390)
Co-founder of Backtrace

Building high performance debugging platform for native
applications.  
 
http://backtrace.io @0xCD03

Founder of Concurrency Kit
A concurrent memory model for C99 and arsenal of tools for
high performance synchronization.

http://concurrencykit.org

Previously at AppNexus, Message Systems and GWU HPCL

http://backtrace.io/
http://concurrencykit.org

Multicore Synchronization
This is a talk on mechanical sympathy of parallel
systems on modern multicore systems.

Understanding both your workload and your
environment allows for effective optimization.

Principles of Multicore

Memory

Cache Coherency
Cache coherency guarantees the eventual consistency
of shared state.

Core 0

Cache

Memory

Core 1

I S A Data

0 I 0x0000 backtrace.io…

1 I 0x0040 393929191

2 S 0x0080 asodkadoakdoak\0

3 M 0x00c0 3.141592

Memory Controller

Cache

I S A Data

0 E 0x1000 ASDOKADO

1 M 0x1040 213091i491119

2 S 0x0080 asodkadoakdoak\0

3 M 0x10c0 9940191

Memory Controller

Memory

Cache Coherency
int x = 443; (&x = 0x20c4)

Core 0

Cache

Memory

Core 1

I S A Data

0 I 0x0000 backtrace.io…

1 I 0x0040 393929191

2 S 0x0080 asodkadoakdoak\0

3 M 0x00c0 3.141592

Memory Controller

Cache

I S A Data

0 E 0x1000 ASDOKADO

1 M 0x1040 213091i491119

2 S 0x0080 asodkadoakdoak\0

3 M 0x10c0 9940191

Memory Controller

x = x + 10010;
Thread 0

printf(“%d\n”, x);

Thread 1

Memory

Cache Coherency
Load x

Core 0

Cache

Memory

Core 1

I S A Data

0 I 0x0000 backtrace.io…

1 I 0x0040 393929191

2 S 0x0080 asodkadoakdoak\0

3 E 0x20c0 1921919119443………

Memory Controller

Cache

I S A Data

0 E 0x1000 ASDOKADO

1 M 0x1040 213091i491119

2 S 0x0080 asodkadoakdoak\0

3 M 0x10c0 9940191

Memory Controller

x = x + 10010;
Thread 0

printf(“%d\n”, x);

Thread 1

Memory

Cache Coherency
Update the value of x

Core 0

Cache

Memory

Core 1

I S A Data

0 I 0x0000 backtrace.io…

1 I 0x0040 393929191

2 S 0x0080 asodkadoakdoak\0

3 M 0x20c0 192191911910453………

Memory Controller

Cache

I S A Data

0 E 0x1000 ASDOKADO

1 M 0x1040 213091i491119

2 S 0x0080 asodkadoakdoak\0

3 M 0x10c0 9940191

Memory Controller

x = x + 10010;
Thread 0

printf(“%d\n”, x);

Thread 1

Memory

Cache Coherency
Thread 1 loads x

Core 0

Cache

Memory

Core 1

I S A Data

0 I 0x0000 backtrace.io…

1 I 0x0040 393929191

2 S 0x0080 asodkadoakdoak\0

3 O 0x20c0 192191911910453………

Memory Controller

Cache

I S A Data

0 E 0x1000 ASDOKADO

1 M 0x1040 213091i491119

2 S 0x0080 asodkadoakdoak\0

3 S 0x20c0 192191911910453………

Memory Controller

x = x + 10010;
Thread 0

printf(“%d\n”, x);

Thread 1

Cache Coherency
MESI, MOESI and MESIF are common cache coherency
protocols.

MOESI: Modified, Owned, Exclusive, Shared, Invalid

MESIF: Modified, Exclusive, Shared, Forwarding

MESI: Modified, Exclusive, Shared, Invalid

Cache Coherency
The cache line is the unit of coherency and can
become an unnecessary source of contention.

[0] [1]

array[]

Thread 0
for (;;) { 
 array[0]++;  
}

Thread 1
for (;;) { 
 array[1]++; 
}

Cache Coherency
False sharing occurs when logically disparate objects
share the same cache line and contend on it.

struct { 
 rwlock_t rwlock; 
 int value;  
} object;

Thread 0
for (;;) { 
 read_lock(&object.rwlock); 
 int v = atomic_read(&object.value); 
 do_work(v); 
 read_unlock(&object.rwlock); 
}

Thread 1
for (;;) { 
 read_lock(&object.rwlock); 
 <short work> 
 read_unlock(&object.rwlock); 
}

Cache Coherency
False sharing occurs when logically disparate objects
share the same cache line and contend on it.

0

750,000,000

1,500,000,000

2,250,000,000

3,000,000,000

One Reader False Sharing

67,091,751

2,165,421,795

Cache Coherency
Padding can be used to mitigate false sharing.

struct {  
 rwlock_t rwlock; 
 char pad[64 - sizeof(rwlock_t)]; 
 int value;  
} object;

Cache Coherency
Padding can be used to mitigate false sharing.

0

750,000,000

1,500,000,000

2,250,000,000

3,000,000,000

One Reader False Sharing Padding

1,954,712,036

67,091,751

2,165,421,795

Cache Coherency
Padding must consider access patterns and overall
footprint of application.

Too much padding is bad.

Simultaneous Multithreading
SMT technology allows for throughput increases by
allowing programs to better utilize processor
resources.

Figure from “The Architecture of the Nehalem Processor and Nehalem-
EP SMP Platforms” (Michael E. Thomadakis)

Atomic Operations
Atomic operations are typically implemented with the
help of the cache coherency mechanism.

lock cmpxchg(target, compare, new):  
 register = load_and_lock(target);  
 if (register == compare) 
 store(target, new); 
 unlock(target); 
 return register;

Cache line locking typically only serializes accesses to
the target cache line.

Atomic Operations
In the old commodity processor days, atomic
operations were implemented with a bus lock.

lock cmpxchg(target, compare, new):  
 lock(memory_bus); 
 register = load(target); 
 if (register == compare) 
 store(target, new); 
 unlock(memory_bus); 
 return register;

x86 will assert a bus lock if an atomic operations goes
across a cache line boundary. Be careful!

Atomic Operations
Atomic operations are crucial to efficient
synchronization primitives.

COMPARE_AND_SWAP(a, b, c): updates a to c if a is
equal to b, atomically.

LOAD_LINKED(a)/STORE_CONDITIONAL(a, b):
Updates a to b if a was not modified between the load-
linked (LL) and store-conditional (SC).

Topology
Most modern multicore systems are NUMA
architectures: the throughput and latency of memory
accesses varies.

Topology
The NUMA factor is a ratio that represents the relative
cost of a remote memory access.

Intel Xeon L5640 machine at 2.27 GHz (12x2)

Time

Local
wake-up ~140ns

Remote
wake-up ~289ns

Topology
NUMA effects can be pervasive and difficult to
mitigate.

Sun x4600

Topology
Be wary of your operating system’s memory placement
mechanisms.

First Touch: Allocate page on memory of first processor
to touch it.

Interleave: Allocate pages round-robin across nodes.

More sophisticated schemes exist that do hierarchical
allocation, page migration, replication and more.

Topology
NUMA-oblivious synchronization objects are not only
susceptible to performance mismatch but starvation
and even livelock under extreme load.

0

25,000,000

50,000,000

75,000,000

100,000,000

C0 C1 C2 C3

1E+07

7E+052E+06

1E+08

 Intel(R) Xeon(R) CPU E7- 4850 @ 2.00GHz @ 10x4

Fairness
Fair locks guarantee starvation-freedom.

0 0

Next Position

CK_CC_INLINE static void
ck_spinlock_ticket_lock(struct ck_spinlock_ticket *ticket)
{
 unsigned int request;

 request = ck_pr_faa_uint(&ticket->next, 1);

 while (ck_pr_load_uint(&ticket->position) != request)
 ck_pr_stall();

 return;
}

Fairness

1 0

Next Position

CK_CC_INLINE static void
ck_spinlock_ticket_lock(struct ck_spinlock_ticket *ticket)
{
 unsigned int request;

 request = ck_pr_faa_uint(&ticket->next, 1);

 while (ck_pr_load_uint(&ticket->position) != request)
 ck_pr_stall();

 return;
}

request = 0

Fairness

1 0

Next Position

CK_CC_INLINE static void
ck_spinlock_ticket_lock(struct ck_spinlock_ticket *ticket)
{
 unsigned int request;

 request = ck_pr_faa_uint(&ticket->next, 1);

 while (ck_pr_load_uint(&ticket->position) != request)
 ck_pr_stall();

 return;
}

request = 0

Fairness

1 1

Next Position

CK_CC_INLINE static void
ck_spinlock_ticket_unlock(struct ck_spinlock_ticket *ticket)
{
 unsigned int update;

 update = ck_pr_load_uint(&ticket->position);
 ck_pr_store_uint(&ticket->position, update + 1);
 return;
}

Fairness

0

6,250,000

12,500,000

18,750,000

25,000,000

C0 C1 C2 C3

4E+064E+064E+064E+06

1E+07

7E+05
2E+06

1E+08
FAS Ticket

 Intel(R) Xeon(R) CPU E7- 4850 @ 2.00GHz @ 10x4

Fairness
Fair locks are not a silver bullet and may negatively
impact throughput.

Fairness comes at the cost of increased sensitivity to
preemption and other sources of jitter.

Fairness

0

1,500,000

3,000,000

4,500,000

6,000,000

C0 C1 C2 C3

4E+064E+064E+064E+06

5E+065E+065E+065E+06

MCS Ticket

 Intel(R) Xeon(R) CPU E7- 4850 @ 2.00GHz @ 10x4

Distributed Locks
Array and queue-based locks provide lock scalability
and fairness with distributing spinning and point-to-
point wake-up.

Thread 1

Thread 2

Thread 3

Thread 4

Distributed Locks
The MCS lock was a seminal contribution to the area
and introduced queue locks to the masses.

Thread 1

Thread 2

Thread 3

Thread 4

Distributed Locks

Thread 1

Thread 2

Thread 3

Thread 4

Distributed Locks

Thread 1

Thread 2

Thread 3

Thread 4

Distributed Locks

Thread 1

Thread 2

Thread 3

Thread 4

Distributed Locks

Thread 1

Thread 2

Thread 3

Thread 4

Distributed Locks

Thread 1

Thread 2

Thread 3

Thread 4

Distributed Locks

Thread 1

Thread 2

Thread 3

Thread 4

Distributed Locks

Thread 1

Thread 2

Thread 3

Thread 4

Distributed Locks

Thread 1

Thread 2

Thread 3

Thread 4

Core 0

Distributed Locks
Similar mechanisms exist for read-write locks.

Writers Readers

Core 1

Core 2

Core 3

Core 0

Distributed Locks
Big reader locks (brlocks) or Read-Mostly Locks
(rmlocks) distribute read-side flags so that readers spin
only on local memory.

Writers

Core 1 Core 2

Reader Reader

Core 3

Reader

Distributed Locks
Similar mechanisms exist for read-write locks.

Intel Xeon E5-2630L at 2.40 GHz

Limitations of Locks
Locks are not composable and are susceptible to
priority inversion, livelock, starvation, deadlock and
more.

A delicate balance must be found between lock
hierarchies, granularity and quality of service.

A significant delay in one thread holding a
synchronization object leads to significant delays for all
other threads waiting on the same synchronization
object.

Limitations of Locks

Intel Xeon E5-2630L at 2.40 GHz

Lock-less Synchronization
With lock-based synchronization, it is sufficient to
reason in terms of lock dependencies and critical
sections.

This model doesn’t work with lock-less synchronization
where we must guarantee correctness in much more
subtle ways.

Memory Models
These days, cache coherency helps implement the
consistency model.

The memory model is specified by the runtime
environment and defines the correct behavior of
shared memory accesses.

Memory Models

int r_0;

x = 1;
r_0 = y;

int r_1;

y = 1;
r_1 = x;

int x = 0;
int y = 0;

if (r_0 == 0 && r_1 == 0)
 abort();

Core 0 Core 1

Memory Models

int r_0;

x = 1;

r_0 = y;

int r_1;

y = 1;

r_1 = x;

int x = 0;
int y = 0;

Core 0 Core 1

(1,1)

Memory Models

int r_0;

x = 1;
r_0 = y;

int r_1;

y = 1;
r_1 = x;

int x = 0;
int y = 0;

Core 0

Core 1

(0,1)

Memory Models

int r_0;

x = 1;
r_0 = y;

int r_1;

y = 1;
r_1 = x;

int x = 0;
int y = 0;

Core 0

Core 1

(1,0)

Memory Models
This condition is possible and is an example of store-
to-load re-ordering.

int r_0;

r_0 = y;
x = 1;

int r_1;

r_1 = x;
y = 1;

Core 0 Core 1

(0,0)

Memory Models
Modern processors rely on a myriad of techniques to
achieve high levels of instruction-level parallelism.

Core 0
Execution Engine

Memory Order-Buffer

L1

L2

Memory

Core 1
Execution Engine

Memory Order-Buffer

L1

L2

x = 1; y = 1;

r_0 = y; r_1 = x;

Memory Models
The processor memory model is specified with respect
to loads, stores and atomic operations.

TSO RMO
Load to Load

Load to Store

Store to Store

Store to Load

Atomics

Examples x86*, SPARC-TSO ARM, Power

Memory Models
Ordering guarantees are provided by serializing
instructions such as memory fences.

mutex_lock(&mutex);
x = x + 1;
mutex_unlock(&mutex);

?

CK_CC_INLINE static void
mutex_lock(struct mutex *lock)
{

 while (ck_pr_fas_uint(&lock->value, true) == true);
 ck_pr_fence_memory();
 return;
}

* Simplified

Memory Models
Serializing instructions are expensive because they
disable some processor optimizations.

Atomic instructions are expensive because they either
involve serialization (and locking) or are just plain old
complex.

Intel Core i7-3615QM at 2.30 GHz

Throughput (/ second)

lock cmpxchg 147,304,564

cmpxchg 458,940,006

Lock-less Synchronization
Non-blocking synchronization provides very specific
progress guarantees and high levels of resilience at the
cost of complexity on the fast path.

Lock-Less
Obstruction-Free

Lock-Free
Wait-Free

Lock-freedom provides
system-wide progress
guarantees.

Wait-freedom provides per-
operation progress
guarantees.

Lock-less Synchronization
struct node {

void *value;
struct node *next;

};

void
stack_push(struct node **top, struct node *entry, void *value)
{

entry->value = value;
entry->next = *top;
*top = entry;
return;

}

struct node *
stack_pop(struct node **top)
{

struct node *r;

r = *top;
*top = r->next;
return r;

}

Lock-less Synchronization
struct node {

void *value;
struct node *next;

};

void
stack_push(struct node **top, struct node *entry,
 void *value)
{

entry->value = value;

do {
entry->next = ck_pr_load_ptr(top);

} while (ck_pr_cas_ptr(top, entry->next,
 entry) == false);

return;
}

Lock-less Synchronization
struct node {

void *value;
struct node *next;

};

void
stack_push(struct node **top, struct node *entry,
 void *value)
{

entry->value = value;

do {
entry->next = ck_pr_load_ptr(top);

} while (ck_pr_cas_ptr(top, entry->next,
 entry) == false);

return;
}

struct node *
stack_pop(struct node **top)
{

struct node *r, *next;

do {
r = ck_pr_load_ptr(top);
if (r == NULL)

return NULL;

next = ck_pr_load_ptr(&r->next);
} while (ck_pr_cas_ptr(top, r, next) ==

 false);

return r;
}

Lock-less Synchronization

Source: Nonblocking Algorithms and Scalable Multicore Programming,
Samy Bahra

Non-blocking synchronization
is not a silver bullet.

The cost of complexity on the
fast path will outweigh the
benefits until sufficient levels of
contention are reached.

Lock-less Synchronization
Relaxing correctness constraints and constraining runtime
requirements allows for many of the benefits without as
much additional complexity and impact on the fast path.

#define EMPLOYEE_MAX 8

struct employee {
 const char *name;
 unsigned long long number;
};

struct directory {
 struct employee *employee[EMPLOYEE_MAX];
 rwlock_t rwlock;
};

bool employee_add(struct directory *, const char *,
 unsigned long long);
void employee_delete(struct directory *, const char *);
unsigned long long employee_number_get(struct directory *,
 const char *);

rwlock

Lock-less Synchronization

unsigned long long
employee_number_get(struct directory *d, const char *n)
{
 struct employee *em;
 unsigned long number;
 size_t i;

 rwlock_read_lock(&d->rwlock);
 for (i = 0; i < EMPLOYEE_MAX; i++) {
 em = d->employee[i];
 if (em == NULL)
 continue;

 if (strcmp(em->name, n) != 0)
 continue;

 number = em->number;
 rwlock_read_unlock(&d->rwlock);

 return number;
 }
 rwlock_read_unlock(&d->rwlock);

 return 0;
}

The rwlock_t object provides
correctness at cost of forward
progress.

“Samy”
2912984911

rwlock

Lock-less Synchronization

bool
employee_add(struct directory *d, const char *n,
 unsigned long long number)
{
 struct employee *em;
 size_t i;

 rwlock_write_lock(&d->rwlock);
 for (i = 0; i < EMPLOYEE_MAX; i++) {
 if (d->employee[i] != NULL)
 continue;

 em = xmalloc(sizeof *em);
 em->name = n;
 em->number = number;
 d->employee[i] = em;
 rwlock_write_unlock(&d->rwlock);
 return true;
 }
 rwlock_write_unlock(&d->rwlock);

 return false;
}

“Samy”
2912984911

rwlock

The rwlock_t object provides
correctness at cost of forward
progress.

Lock-less Synchronization

“Samy”
2912984911

rwlock

The rwlock_t object provides
correctness at cost of forward
progress.

void
employee_delete(struct directory *d, const char *n)
{
 struct employee *em;
 size_t i;

 rwlock_write_lock(&d->rwlock);
 for (i = 0; i < EMPLOYEE_MAX; i++) {
 if (d->employee[i] == NULL)
 continue;

 if (strcmp(d->employee[i]->name, n) != 0)
 continue;

 em = d->employee[i];
 d->employee[i] = NULL;
 rwlock_write_unlock(&d->rwlock);
 free(em);

 return;
 }
 rwlock_write_unlock(&d->rwlock);

 return;
}

Lock-less Synchronization

void
employee_delete(struct directory *d, const char *n)
{
 struct employee *em;
 size_t i;

 rwlock_write_lock(&d->rwlock);
 for (i = 0; i < EMPLOYEE_MAX; i++) {
 if (d->employee[i] == NULL)
 continue;

 if (strcmp(d->employee[i]->name, n) != 0)
 continue;

 em = d->employee[i];
 d->employee[i] = NULL;
 rwlock_write_unlock(&d->rwlock);
 free(em);

 return;
 }
 rwlock_write_unlock(&d->rwlock);

 return;
}

“Samy”
2912984911

rwlock

If reachability and liveness are
coupled, you also protect
against a read-reclaim race.

Lock-less Synchronization

If reachability and liveness are coupled, you also protect against a
read-reclaim race.

strcmp(em->name, …

number = em->number

employee_delete waits on readers

Time

T0

T1

T2

employee_delete destroys object

Lock-less Synchronization

Decoupling is sometimes necessary, but requires a safe memory
reclamation scheme to guarantee that an object cannot be
physically destroyed if there are active references to it.

static struct employee *
employee_number_get(struct directory *d, const char *n,
 ck_brlock_reader_t *reader)
{
…
 ck_brlock_read_lock(&d->brlock, reader);
 for (i = 0; i < EMPLOYEE_MAX; i++) {
 em = d->employee[i];
 if (em == NULL)
 continue;

 if (strcmp(em->name, n) != 0)
 continue;

 ck_pr_inc_uint(&em->ref);
 ck_brlock_read_unlock(reader);
 return em;
 }
 ck_brlock_read_unlock(reader);
…

Lock-less Synchronization

Decoupling is sometimes necessary, but requires a safe memory
reclamation scheme to guarantee that an object cannot be
physically destroyed if there are active references to it.

static void
employee_delref(struct employee *em)
{
 bool z;

 ck_pr_dec_uint_zero(&em->ref, &z);
 if (z == true)
 free(em);
 return;
}

Lock-less Synchronization

Decoupling is sometimes necessary, but requires a safe memory
reclamation scheme to guarantee that an object cannot be
physically destroyed if there are active references to it.

static void
employee_delete(struct directory *d, const char *n)
{
…
 ck_brlock_write_lock(&d->brlock);
 for (i = 0; i < EMPLOYEE_MAX; i++) {
 if (d->employee[i] == NULL)
 continue;

 if (strcmp(d->employee[i]->name, n) != 0)
 continue;

 em = d->employee[i];
 d->employee[i] = NULL;
 ck_brlock_write_unlock(&d->brlock);
 employee_delref(em);

 return;
 }
 ck_brlock_write_unlock(&d->brlock);
…

Lock-less Synchronization

Decoupling is sometimes necessary, but requires a safe memory
reclamation scheme to guarantee that an object cannot be
physically destroyed if there are active references to it.

get

get

logical deleteT0

T1

T2

logical delete

physical delete

active reference

active reference

Lock-less Synchronization

Concurrent Data Structures
static bool
employee_add(struct directory *d, const char *n,
 unsigned long long number)
{
 struct employee *em;
 size_t i;

 ck_rwlock_write_lock(&d->rwlock);
 for (i = 0; i < EMPLOYEE_MAX; i++) {
 if (d->employee[i] != NULL)
 continue;

 em = malloc(sizeof *em);
 em->name = n;
 em->number = number;
 ck_pr_fence_store();
 ck_pr_store_ptr(&d->employee[i], em);
 ck_rwlock_write_unlock(&d->rwlock);
 return true;
 }
 ck_rwlock_write_unlock(&d->rwlock);

 return false;
}

static unsigned long long
employee_number_get(struct directory *d, const char *n)
{
 struct employee *em;
 unsigned long number;
 size_t i;

 for (i = 0; i < EMPLOYEE_MAX; i++) {
 em = ck_pr_load_ptr(&d->employee[i]);
 if (em == NULL)
 continue;

 ck_pr_fence_load_depends();
 if (strcmp(em->name, n) != 0)
 continue;

 number = em->number;
 return number;
 }

 return 0;
}

Concurrent Data Structures
static void
employee_delete(struct directory *d, const char *n)
{
 struct employee *em;
 size_t i;

 ck_rwlock_write_lock(&d->rwlock);
 for (i = 0; i < EMPLOYEE_MAX; i++) {
 if (d->employee[i] == NULL)
 continue;

 if (strcmp(d->employee[i]->name, n) != 0)
 continue;

 em = d->employee[i];
 ck_pr_store_ptr(&d->employee[i], NULL);
 ck_rwlock_write_unlock(&d->rwlock);

 /* XXX: When is it safe to free em? */
 return;
 }
 ck_rwlock_write_unlock(&d->rwlock);

 return;
}

static unsigned long long
employee_number_get(struct directory *d, const char *n)
{
 struct employee *em;
 unsigned long number;
 size_t i;

 for (i = 0; i < EMPLOYEE_MAX; i++) {
 em = ck_pr_load_ptr(&d->employee[i]);
 if (em == NULL)
 continue;

 ck_pr_fence_load_depends();
 if (strcmp(em->name, n) != 0)
 continue;

 number = em->number;
 return number;
 }

 return 0;
}

EXPERIMENT
• Uniform read-mostly workload
• Single writer attempts pessimistic add operation at fixed

frequency
• Readers attempt to get the number of the first employee

Environment
• 12 cores across 2 sockets
• Intel Xeon E5-2630L at 2.40 GHz
• Linux 2.6.32

Workload

Machine (64GB)
 NUMANode L#0 (P#0 32GB)
 Socket L#0 + L3 L#0 (15MB)
 L2 L#0 (256KB) + L1d L#0 (32KB) + L1i L#0 (32KB) + Core L#0 + PU L#0 (P#0)

Read Latency
No updates

Read Latency
No updates

Read Latency
Single writer

Write Latency
Single writer

Safe Memory Reclamation
A read-reclaim race occurs if an object is destroyed while there are
references or accesses to it.

strcmp(em->name, …

number = em->number

free(em)

Time

T0

T1

T2

Safe Memory Reclamation
Techniques such as hazard pointers, quiescent-state-based
reclamation and epoch-based reclamation protect against read-
reclaim races.

Schemes such as QSBR and EBR do so without affecting reader
progress but without guaranteeing writer progress.

Schemes provide strong guarantees on forward progress but
require heavy-weight instructions and retry logic for readers.

strcmp(em->name, …

number = em->number

free(em)

Time

T0

T1

T2

BLOCKING SMR SCHEMES
• Read-side critical sections

smr_read_lock();

<protected section>

smr_read_unlock();

• Explicit Reclamation
smr_synchronize();

smr_read_begin();

<protected section>

smr_read_end();

QUIESCENT-STATE-BASED RECLAMATION

Time

T0

T1

T2

logical delete synchronize

q read

q read

q

q

read q

G0

read q

synchronize

G1

destroy

QUIESCENT-STATE-BASED RECLAMATION

employee_number_delete
[…]
 ck_pr_store_ptr(slot, NULL);
 qsbr_synchronize();
 free(em);
[…]

Writer Readers
[…]
 for (;;) {
 em = employee_get(…);
 do_stuff(em);
 quiesce();
 }
[…]

Time

ck_pr_store_ptr(slot, NULL);
em = employee_get(…);

qsbr_synchronize();

do_stuff(em);

quiesce();

em = employee_get(…);

do_stuff(em);

quiesce();em = employee_get(…);

do_stuff(em);
em = employee_get(…);

do_stuff(em);

free(em);

T0
T1

T2

QUIESCENT-STATE-BASED RECLAMATION

static void
qsbr_synchronize(void)
{
 int i;
 uint64_t goal;

 ck_pr_fence_memory();
 goal = ck_pr_faa_64(&global.value, 1) + 1;

 for (i = 0; i < n_reader; i++) {
 uint64_t *c =
 &threads.readers[i].counter.value;

 while (ck_pr_load_64(c) < goal)
 ck_pr_stall();
 }

 return;
}

Readers
static void
qsbr_quiesce(struct thread *th)
{
 uint64_t v;

 ck_pr_fence_memory();
 v = ck_pr_load_64(&global.value);
 ck_pr_store_64(&th->counter.value, v);
 ck_pr_fence_memory();
 return;
}

Writers

static void
qsbr_read_lock(struct thread *th)
{

 ck_pr_barrier(); /* Compiler barrier. */
 return;
}

static void
qsbr_read_unlock(struct thread *th)
{

 ck_pr_barrier(); /* Compiler barrier. */
 return;
}

Conclusion
There are no silver bullets in multicore synchronization,
but a deep understanding of both your workload and
your underlying environment may allow you to extract
phenomenal performance and reliability increases.

The End

http://concurrencykit.org

http://backtrace.io/

@0xF390

A lot of the content can be found on https://
queue.acm.org/detail.cfm?id=2492433 - along with
references.

http://concurrencykit.org
http://backtrace.io/
https://queue.acm.org/detail.cfm?id=2492433

