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Multicore Synchronization
This is a talk on mechanical sympathy of parallel 
systems on modern multicore systems.

Understanding both your workload and your 
environment allows for effective optimization.



Principles of Multicore



Memory

Cache Coherency
Cache coherency guarantees the eventual consistency 
of shared state.
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Memory

Cache Coherency
int x = 443; (&x = 0x20c4)
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Memory

Cache Coherency
Load x
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Memory

Cache Coherency
Update the value of x
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Memory

Cache Coherency
Thread 1 loads x
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Cache Coherency
MESI, MOESI and MESIF are common cache coherency 
protocols.

MOESI: Modified, Owned, Exclusive, Shared, Invalid

MESIF: Modified, Exclusive, Shared, Forwarding

MESI: Modified, Exclusive, Shared, Invalid



Cache Coherency
The cache line is the unit of coherency and can 
become an unnecessary source of contention.
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array[]

Thread 0
for (;;) { 
    array[0]++;  
}

Thread 1
for (;;) { 
    array[1]++; 
}



Cache Coherency
False sharing occurs when logically disparate objects 
share the same cache line and contend on it.

struct { 
    rwlock_t rwlock; 
    int value;  
} object;

Thread 0
for (;;) { 
    read_lock(&object.rwlock); 
    int v = atomic_read(&object.value); 
    do_work(v); 
    read_unlock(&object.rwlock); 
}

Thread 1
for (;;) { 
    read_lock(&object.rwlock); 
    <short work> 
    read_unlock(&object.rwlock); 
}



Cache Coherency
False sharing occurs when logically disparate objects 
share the same cache line and contend on it.
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Cache Coherency
Padding can be used to mitigate false sharing.

struct {  
    rwlock_t rwlock; 
    char pad[64 - sizeof(rwlock_t)]; 
    int value;  
} object;



Cache Coherency
Padding can be used to mitigate false sharing.
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Cache Coherency
Padding must consider access patterns and overall 
footprint of application. 

Too much padding is bad.



Simultaneous Multithreading
SMT technology allows for throughput increases by 
allowing programs to better utilize processor 
resources.

Figure from “The Architecture of the Nehalem Processor and Nehalem-
EP SMP Platforms” (Michael E. Thomadakis)



Atomic Operations
Atomic operations are typically implemented with the 
help of the cache coherency mechanism.

lock cmpxchg(target, compare, new):  
    register = load_and_lock(target);  
    if (register == compare) 
        store(target, new); 
    unlock(target); 
    return register;

Cache line locking typically only serializes accesses to 
the target cache line.



Atomic Operations
In the old commodity processor days, atomic 
operations were implemented with a bus lock.

lock cmpxchg(target, compare, new):  
    lock(memory_bus); 
    register = load(target); 
    if (register == compare) 
        store(target, new); 
    unlock(memory_bus); 
    return register;

x86 will assert a bus lock if an atomic operations goes 
across a cache line boundary. Be careful!



Atomic Operations
Atomic operations are crucial to efficient 
synchronization primitives.

COMPARE_AND_SWAP(a, b, c): updates a to c if a is 
equal to b, atomically.

LOAD_LINKED(a)/STORE_CONDITIONAL(a, b): 
Updates a to b if a was not modified between the load-
linked (LL) and store-conditional (SC).



Topology
Most modern multicore systems are NUMA 
architectures: the throughput and latency of memory 
accesses varies.



Topology
The NUMA factor is a ratio that represents the relative 
cost of a remote memory access.

Intel Xeon L5640 machine at 2.27 GHz (12x2)

Time

Local 
wake-up ~140ns

Remote 
wake-up ~289ns



Topology
NUMA effects can be pervasive and difficult to 
mitigate.

Sun x4600



Topology
Be wary of your operating system’s memory placement 
mechanisms.

First Touch: Allocate page on memory of first processor 
to touch it. 

Interleave: Allocate pages round-robin across nodes.

More sophisticated schemes exist that do hierarchical 
allocation, page migration, replication and more.



Topology
NUMA-oblivious synchronization objects are not only 
susceptible to performance mismatch but starvation 
and even livelock under extreme load.
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Fairness
Fair locks guarantee starvation-freedom.

0 0
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CK_CC_INLINE static void 
ck_spinlock_ticket_lock(struct ck_spinlock_ticket *ticket) 
{ 
        unsigned int request; 

        request = ck_pr_faa_uint(&ticket->next, 1); 

        while (ck_pr_load_uint(&ticket->position) != request) 
                ck_pr_stall(); 

        return; 
}



Fairness
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CK_CC_INLINE static void 
ck_spinlock_ticket_lock(struct ck_spinlock_ticket *ticket) 
{ 
        unsigned int request; 

      request = ck_pr_faa_uint(&ticket->next, 1); 

        while (ck_pr_load_uint(&ticket->position) != request) 
                ck_pr_stall(); 

        return; 
}
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Fairness

1 0
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CK_CC_INLINE static void 
ck_spinlock_ticket_lock(struct ck_spinlock_ticket *ticket) 
{ 
        unsigned int request; 

        request = ck_pr_faa_uint(&ticket->next, 1); 

       while (ck_pr_load_uint(&ticket->position) != request) 
              ck_pr_stall(); 

        return; 
}

request = 0



Fairness

1 1

Next Position

CK_CC_INLINE static void 
ck_spinlock_ticket_unlock(struct ck_spinlock_ticket *ticket) 
{ 
        unsigned int update; 

        update = ck_pr_load_uint(&ticket->position); 
        ck_pr_store_uint(&ticket->position, update + 1); 
        return; 
} 



Fairness
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Fairness
Fair locks are not a silver bullet and may negatively 
impact throughput. 

Fairness comes at the cost of increased sensitivity to 
preemption and other sources of jitter.



Fairness
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Distributed Locks
Array and queue-based locks provide lock scalability 
and fairness with distributing spinning and point-to-
point wake-up.
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Distributed Locks
The MCS lock was a seminal contribution to the area 
and introduced queue locks to the masses.

Thread 1

Thread 2

Thread 3

Thread 4



Distributed Locks
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Distributed Locks
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Distributed Locks
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Core 0

Distributed Locks
Similar mechanisms exist for read-write locks.

Writers Readers

Core 1

Core 2

Core 3



Core 0

Distributed Locks
Big reader locks (brlocks) or Read-Mostly Locks 
(rmlocks) distribute read-side flags so that readers spin 
only on local memory.
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Distributed Locks
Similar mechanisms exist for read-write locks.

Intel Xeon E5-2630L at 2.40 GHz



Limitations of Locks
Locks are not composable and are susceptible to 
priority inversion, livelock, starvation, deadlock and 
more. 

A delicate balance must be found between lock 
hierarchies, granularity and quality of service. 

A significant delay in one thread holding a 
synchronization object leads to significant delays for all 
other threads waiting on the same synchronization 
object.



Limitations of Locks

Intel Xeon E5-2630L at 2.40 GHz



Lock-less Synchronization
With lock-based synchronization, it is sufficient to 
reason in terms of lock dependencies and critical 
sections. 

This model doesn’t work with lock-less synchronization 
where we must guarantee correctness in much more 
subtle ways.



Memory Models
These days, cache coherency helps implement the 
consistency model. 

The memory model is specified by the runtime 
environment and defines the correct behavior of 
shared memory accesses.



Memory Models
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Memory Models
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Memory Models
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Memory Models
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Memory Models
This condition is possible and is an example of store-
to-load re-ordering.

int r_0; 

r_0 = y; 
x = 1;

int r_1; 

r_1 = x; 
y = 1;
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Memory Models
Modern processors rely on a myriad of techniques to 
achieve high levels of instruction-level parallelism.
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Memory Models
The processor memory model is specified with respect 
to loads, stores and atomic operations.

TSO RMO
Load to Load

Load to Store

Store to Store

Store to Load

Atomics

Examples x86*, SPARC-TSO ARM, Power



Memory Models
Ordering guarantees are provided by serializing 
instructions such as memory fences.

mutex_lock(&mutex); 
x = x + 1; 
mutex_unlock(&mutex);

?

CK_CC_INLINE static void 
mutex_lock(struct mutex *lock) 
{ 

        while (ck_pr_fas_uint(&lock->value, true) == true); 
        ck_pr_fence_memory(); 
        return; 
}

* Simplified



Memory Models
Serializing instructions are expensive because they 
disable some processor optimizations. 

Atomic instructions are expensive because they either 
involve serialization (and locking) or are just plain old 
complex.

Intel Core i7-3615QM at 2.30 GHz

Throughput (/ second)

lock cmpxchg 147,304,564

cmpxchg 458,940,006



Lock-less Synchronization
Non-blocking synchronization provides very specific 
progress guarantees and high levels of resilience at the 
cost of complexity on the fast path.

Lock-Less
Obstruction-Free

Lock-Free
Wait-Free

Lock-freedom provides 
system-wide progress 
guarantees. 

Wait-freedom provides per-
operation progress 
guarantees.



Lock-less Synchronization
struct node {

void *value;
struct node *next;

};

void
stack_push(struct node **top, struct node *entry, void *value)
{

entry->value = value;
entry->next = *top;
*top = entry;
return;

}

struct node *
stack_pop(struct node **top)
{

struct node *r;

r = *top;
*top = r->next;
return r;

}



Lock-less Synchronization
struct node {

void *value;
struct node *next;

};

void
stack_push(struct node **top, struct node *entry,
     void *value)
{

entry->value = value;

do {
entry->next = ck_pr_load_ptr(top);

} while (ck_pr_cas_ptr(top, entry->next,
         entry) == false);

return;
}



Lock-less Synchronization
struct node {

void *value;
struct node *next;

};

void
stack_push(struct node **top, struct node *entry,
     void *value)
{

entry->value = value;

do {
entry->next = ck_pr_load_ptr(top);

} while (ck_pr_cas_ptr(top, entry->next,
         entry) == false);

return;
}

struct node *
stack_pop(struct node **top)
{

struct node *r, *next;

do {
r = ck_pr_load_ptr(top);
if (r == NULL)

return NULL;

next = ck_pr_load_ptr(&r->next);
} while (ck_pr_cas_ptr(top, r, next) ==

       false);

return r;
}



Lock-less Synchronization

Source: Nonblocking Algorithms and Scalable Multicore Programming, 
Samy Bahra

Non-blocking synchronization 
is not a silver bullet.

The cost of complexity on the 
fast path will outweigh the 
benefits until sufficient levels of 
contention are reached.



Lock-less Synchronization
Relaxing correctness constraints and  constraining runtime 
requirements allows for many of the benefits without as 
much additional complexity and impact on the fast path.



#define EMPLOYEE_MAX 8 

struct employee { 
    const char *name; 
    unsigned long long number; 
}; 

struct directory { 
    struct employee *employee[EMPLOYEE_MAX]; 
    rwlock_t rwlock; 
}; 

bool employee_add(struct directory *, const char *, 
    unsigned long long); 
void employee_delete(struct directory *, const char *); 
unsigned long long employee_number_get(struct directory *, 
    const char *);

rwlock

Lock-less Synchronization



unsigned long long 
employee_number_get(struct directory *d, const char *n) 
{ 
    struct employee *em; 
    unsigned long number; 
    size_t i; 

    rwlock_read_lock(&d->rwlock); 
    for (i = 0; i < EMPLOYEE_MAX; i++) { 
        em = d->employee[i]; 
        if (em == NULL) 
            continue; 

        if (strcmp(em->name, n) != 0) 
            continue; 

       number = em->number; 
       rwlock_read_unlock(&d->rwlock); 
        
       return number; 
   } 
   rwlock_read_unlock(&d->rwlock); 

   return 0; 
}

The rwlock_t object provides 
correctness at cost of forward 
progress.

“Samy” 
2912984911

rwlock

Lock-less Synchronization



bool 
employee_add(struct directory *d, const char *n, 
    unsigned long long number) 
{ 
    struct employee *em; 
    size_t i; 

    rwlock_write_lock(&d->rwlock); 
    for (i = 0; i < EMPLOYEE_MAX; i++) { 
        if (d->employee[i] != NULL) 
            continue; 

        em = xmalloc(sizeof *em); 
        em->name = n; 
        em->number = number; 
        d->employee[i] = em; 
        rwlock_write_unlock(&d->rwlock); 
        return true; 
   } 
   rwlock_write_unlock(&d->rwlock); 

   return false; 
} 

“Samy” 
2912984911

rwlock

The rwlock_t object provides 
correctness at cost of forward 
progress.

Lock-less Synchronization



“Samy” 
2912984911

rwlock

The rwlock_t object provides 
correctness at cost of forward 
progress.

void 
employee_delete(struct directory *d, const char *n) 
{ 
    struct employee *em; 
    size_t i; 

    rwlock_write_lock(&d->rwlock); 
    for (i = 0; i < EMPLOYEE_MAX; i++) { 
        if (d->employee[i] == NULL) 
            continue; 

        if (strcmp(d->employee[i]->name, n) != 0) 
            continue; 

       em = d->employee[i]; 
       d->employee[i] = NULL; 
       rwlock_write_unlock(&d->rwlock); 
       free(em); 

       return; 
    } 
    rwlock_write_unlock(&d->rwlock); 

    return; 
} 

Lock-less Synchronization



void 
employee_delete(struct directory *d, const char *n) 
{ 
    struct employee *em; 
    size_t i; 

    rwlock_write_lock(&d->rwlock); 
    for (i = 0; i < EMPLOYEE_MAX; i++) { 
        if (d->employee[i] == NULL) 
            continue; 

        if (strcmp(d->employee[i]->name, n) != 0) 
            continue; 

       em = d->employee[i]; 
       d->employee[i] = NULL; 
       rwlock_write_unlock(&d->rwlock); 
       free(em); 

       return; 
    } 
    rwlock_write_unlock(&d->rwlock); 

    return; 
} 

“Samy” 
2912984911

rwlock

If reachability and liveness are 
coupled, you also protect 
against a read-reclaim race.

Lock-less Synchronization



If reachability and liveness are coupled, you also protect against a 
read-reclaim race.

strcmp(em->name, …

number = em->number

employee_delete waits on readers

Time

T0

T1

T2

employee_delete destroys object

Lock-less Synchronization



Decoupling is sometimes necessary, but requires a safe memory 
reclamation scheme to guarantee that an object cannot be 
physically destroyed if there are active references to it.

static struct employee *                                           
employee_number_get(struct directory *d, const char *n,     
   ck_brlock_reader_t *reader)                                 
{                                                                      
…                                                                  
        ck_brlock_read_lock(&d->brlock, reader);                   
        for (i = 0; i < EMPLOYEE_MAX; i++) {                        
                em = d->employee[i];                                            
                if (em == NULL)                                                 
                        continue;                                               
                                                                                
                if (strcmp(em->name, n) != 0)                                   
                        continue;                                               
                                                                                
                ck_pr_inc_uint(&em->ref);                                       
                ck_brlock_read_unlock(reader);                                  
                return em;                                                      
        }                                       
        ck_brlock_read_unlock(reader);                                        
… 

Lock-less Synchronization



Decoupling is sometimes necessary, but requires a safe memory 
reclamation scheme to guarantee that an object cannot be 
physically destroyed if there are active references to it.

static void 
employee_delref(struct employee *em) 
{ 
        bool z; 

        ck_pr_dec_uint_zero(&em->ref, &z); 
        if (z == true) 
                free(em); 
        return; 
} 

Lock-less Synchronization



Decoupling is sometimes necessary, but requires a safe memory 
reclamation scheme to guarantee that an object cannot be 
physically destroyed if there are active references to it.

static void 
employee_delete(struct directory *d, const char *n) 
{ 
… 
        ck_brlock_write_lock(&d->brlock); 
        for (i = 0; i < EMPLOYEE_MAX; i++) { 
                if (d->employee[i] == NULL) 
                        continue; 

                if (strcmp(d->employee[i]->name, n) != 0) 
                        continue; 

                em = d->employee[i]; 
                d->employee[i] = NULL; 
                ck_brlock_write_unlock(&d->brlock); 
                employee_delref(em); 

                return; 
        } 
        ck_brlock_write_unlock(&d->brlock); 
… 

Lock-less Synchronization



Decoupling is sometimes necessary, but requires a safe memory 
reclamation scheme to guarantee that an object cannot be 
physically destroyed if there are active references to it.

get

get

logical deleteT0
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logical delete

physical delete

active reference

active reference

Lock-less Synchronization



Concurrent Data Structures
static bool 
employee_add(struct directory *d, const char *n, 
        unsigned long long number) 
{ 
        struct employee *em; 
        size_t i; 

        ck_rwlock_write_lock(&d->rwlock); 
        for (i = 0; i < EMPLOYEE_MAX; i++) { 
                if (d->employee[i] != NULL) 
                        continue; 

                em = malloc(sizeof *em); 
                em->name = n; 
                em->number = number; 
                ck_pr_fence_store(); 
                ck_pr_store_ptr(&d->employee[i], em); 
                ck_rwlock_write_unlock(&d->rwlock); 
                return true; 
        } 
        ck_rwlock_write_unlock(&d->rwlock); 

        return false; 
}

static unsigned long long 
employee_number_get(struct directory *d, const char *n) 
{ 
        struct employee *em; 
        unsigned long number; 
        size_t i; 

        for (i = 0; i < EMPLOYEE_MAX; i++) { 
                em = ck_pr_load_ptr(&d->employee[i]); 
                if (em == NULL) 
                        continue; 

                ck_pr_fence_load_depends(); 
                if (strcmp(em->name, n) != 0) 
                        continue; 

                number = em->number; 
                return number; 
        } 

        return 0; 
} 



Concurrent Data Structures
static void 
employee_delete(struct directory *d, const char *n) 
{ 
        struct employee *em; 
        size_t i; 

        ck_rwlock_write_lock(&d->rwlock); 
        for (i = 0; i < EMPLOYEE_MAX; i++) { 
                if (d->employee[i] == NULL) 
                        continue; 

                if (strcmp(d->employee[i]->name, n) != 0) 
                        continue; 

                em = d->employee[i]; 
                ck_pr_store_ptr(&d->employee[i], NULL); 
                ck_rwlock_write_unlock(&d->rwlock); 

                /* XXX: When is it safe to free em? */ 
                return; 
        } 
        ck_rwlock_write_unlock(&d->rwlock); 

        return; 
}

static unsigned long long 
employee_number_get(struct directory *d, const char *n) 
{ 
        struct employee *em; 
        unsigned long number; 
        size_t i; 

        for (i = 0; i < EMPLOYEE_MAX; i++) { 
                em = ck_pr_load_ptr(&d->employee[i]); 
                if (em == NULL) 
                        continue; 

                ck_pr_fence_load_depends(); 
                if (strcmp(em->name, n) != 0) 
                        continue; 

                number = em->number; 
                return number; 
        } 

        return 0; 
} 



EXPERIMENT
• Uniform read-mostly workload 
• Single writer attempts pessimistic add operation at fixed 

frequency 
• Readers attempt to get the number of the first employee

Environment
• 12 cores across 2 sockets 
• Intel Xeon E5-2630L at 2.40 GHz 
• Linux 2.6.32

Workload

Machine (64GB) 
  NUMANode L#0 (P#0 32GB) 
    Socket L#0 + L3 L#0 (15MB) 
      L2 L#0 (256KB) + L1d L#0 (32KB) + L1i L#0 (32KB) + Core L#0 + PU L#0 (P#0) 



Read Latency
No updates



Read Latency
No updates



Read Latency
Single writer



Write Latency
Single writer



Safe Memory Reclamation
A read-reclaim race occurs if an object is destroyed while there are 
references or accesses to it.

strcmp(em->name, …

number = em->number

free(em)

Time

T0

T1

T2



Safe Memory Reclamation
Techniques such as hazard pointers, quiescent-state-based 
reclamation and epoch-based reclamation protect against read-
reclaim races. 

Schemes such as QSBR and EBR do so without affecting reader 
progress but without guaranteeing writer progress. 

Schemes provide strong guarantees on forward progress but 
require heavy-weight instructions and retry logic for readers.

strcmp(em->name, …

number = em->number

free(em)

Time

T0

T1

T2



BLOCKING SMR SCHEMES
• Read-side critical sections

smr_read_lock(); 

<protected section> 

smr_read_unlock();

• Explicit Reclamation
smr_synchronize();

smr_read_begin(); 

<protected section> 

smr_read_end();



QUIESCENT-STATE-BASED RECLAMATION

Time

T0

T1

T2

logical delete synchronize

q read

q read

q

q

read q

G0

read q

synchronize

G1

destroy



QUIESCENT-STATE-BASED RECLAMATION

employee_number_delete 
[…] 
    ck_pr_store_ptr(slot, NULL); 
    qsbr_synchronize(); 
    free(em); 
[…] 

Writer Readers
[…] 
    for (;;) { 
        em = employee_get(…); 
        do_stuff(em); 
        quiesce(); 
    } 
[…]

Time

ck_pr_store_ptr(slot, NULL);
em = employee_get(…);

qsbr_synchronize(); 

do_stuff(em); 

quiesce();

em = employee_get(…);

do_stuff(em); 

quiesce();em = employee_get(…);

do_stuff(em); 
em = employee_get(…);

do_stuff(em);

free(em);

T0
T1

T2



QUIESCENT-STATE-BASED RECLAMATION

static void 
qsbr_synchronize(void) 
{ 
        int i; 
        uint64_t goal; 

        ck_pr_fence_memory(); 
        goal = ck_pr_faa_64(&global.value, 1) + 1; 

        for (i = 0; i < n_reader; i++) { 
                uint64_t *c = 
                  &threads.readers[i].counter.value; 

                while (ck_pr_load_64(c) < goal) 
                        ck_pr_stall(); 
        } 

        return; 
}

Readers
static void 
qsbr_quiesce(struct thread *th) 
{ 
       uint64_t v; 

       ck_pr_fence_memory(); 
       v =  ck_pr_load_64(&global.value); 
       ck_pr_store_64(&th->counter.value, v); 
       ck_pr_fence_memory(); 
       return; 
}

Writers

static void 
qsbr_read_lock(struct thread *th) 
{ 

       ck_pr_barrier(); /* Compiler barrier. */ 
       return; 
} 

static void 
qsbr_read_unlock(struct thread *th) 
{ 

       ck_pr_barrier(); /* Compiler barrier. */ 
       return; 
}



Conclusion
There are no silver bullets in multicore synchronization, 
but a deep understanding of both your workload and 
your underlying environment may allow you to extract 
phenomenal performance and reliability increases.



The End

http://concurrencykit.org 

http://backtrace.io/

@0xF390

A lot of the content can be found on https://
queue.acm.org/detail.cfm?id=2492433 - along with 
references.

http://concurrencykit.org
http://backtrace.io/
https://queue.acm.org/detail.cfm?id=2492433

