Umver51ty
Glasgow

RELEASE

Scaling Distributes Systems

Natalia Chechina
and RELEASE Team

SEVENTH FRAMEWORK
PROGRAMME
pnt June 11’ 2015 UNIVERSITY

¢ s w
‘ % ‘ UPPALA

-
~ < €DF
ERICSSON UNIVERSITET SOLUTIONS

\

N. Chechina, RELEASE team Scaling Distributes Systems

@ 2011: Received PhD degree in Computer Science from
Heriot-Watt University, UK

@ 2011-2015: WP3 lead in the EU RELEASE Project at
Glasgow University, UK

@ March 2015: Research Fellow at Glasgow University, UK

Main research interest: Scaling distributed computations on
commodity hardware

N. Chechina, RELEASE team Scaling Distributes Systems

Sources

@ Research findings
o Experience from the RELEASE project
o Funded by EU FP7 Framework
o 5 academic & 3 industrial partners
o Aim: To scale the radical actor (concurrency-oriented)
paradigm to build reliable general-purpose software, such as
server-based systems, on massively parallel machines (10°
cores)
o Erlang programming language

o Experience of other researches and developers

N. Chechina, RELEASE team Scaling Distributes Systems

Scaling a Sysem

Scaling ALL aspects of computation

Application
Language
Virtual Machine

o

o

@ In-memory data structures
o Persistent data structures
°

Tools (debugging, monitoring, etc)

N. Chechina, RELEASE team Scaling Distributes Systems

Scaling a Sysem

Scaling ALL aspects of computation

Application
Language
Virtual Machine

o

o

@ In-memory data structures
o Persistent data structures
°

Tools (debugging, monitoring, etc)

N. Chechina, RELEASE team Scaling Distributes Systems

Scaling on language level

@ Actor model

@ Functional programming

N. Chechina, RELEASE team Scaling Distributes Systems

Language — Actor Model

Built-in concurrency
@ Actors have own states and don't share them
@ Communication between actor happens only via message
passing

@ Actors can spawn new actors

Mailbox [
L

- N@

Isolated
State

2 +0-—"0
/

Actor

N. Chechina, RELEASE team Scaling Distributes Systems

Language — Functional programming

Fundamental operation — application of functions to arguments
@ Higher-order functions — well-structured software
@ Modules — independent, reusable
o Lazy evaluations

o Variables given values only once

N. Chechina, RELEASE team Scaling Distributes Systems

Fault Tolerance

@ 10° cores — approx. failure of 1 core per hour

@ Non-defensive approach — Supervision & "Let it crash”

N. Chechina, RELEASE team Scaling Distributes Systems

Philosophy

@ Principles
o ldeas

@ Core values

N. Chechina, RELEASE team Scaling Distributes Systems

RELEASE Aim

To scale the radical actor (concurrency-oriented) paradigm to build
reliable general-purpose software, such as server-based systems, on
massively parallel machines (10° cores).

N. Chechina, RELEASE team Scaling Distributes Systems

RELEASE Aim

To scale the radical actor (concurrency-oriented) paradigm to build
reliable general-purpose software, such as server-based systems, on
massively parallel machines (10° cores).

Erlang

N. Chechina, RELEASE team Scaling Distributes Systems

RELEASE Aim

To scale the radical actor (concurrency-oriented) paradigm to build
reliable general-purpose software, such as server-based systems, on
massively parallel machines (10° cores).

Erlang

o VM aspects, e.g. synchronisation on internal data structures

e Language aspects, e.g. maintaining a fully connected
network of nodes, explicit process placement

o Tool support

N. Chechina, RELEASE team Scaling Distributes Systems

RELEASE Aim

To scale the radical actor (concurrency-oriented) paradigm to build
reliable general-purpose software, such as server-based systems, on
massively parallel machines (10° cores).

Erlang

o VM aspects, e.g. synchronisation on internal data structures

e Language aspects, e.g. maintaining a fully connected
network of nodes, explicit process placement

o Tool support

N. Chechina, RELEASE team Scaling Distributes Systems

Typical Target Architecture - 10° cores

o Commodity hardware
@ Non-uniform communication
(Level0 — same host, Levell — same cluster, etc)

Cloud 3

Cloud 1

N. Chechina, RELEASE team Scaling Distributes Systems

Erlang Overview

Erlang

@ is a functional general purpose concurrent programming
language developed in 1986 at Ericsson

@ is dynamically typed

o was designed for distributed, fault-tolerant, massively
concurrent, and soft-real time systems

o follows /et it crash and share nothing philosophy

The language primitives are processes.
Erlang concurrency is handled by the language and not by the
operating system [Arm10].

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang

Distributed Erlang

Distributed Erlang

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang

Distributed Erlang

@ Transitive connections

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang

Distributed Erlang

@ Transitive connections
o Explicit Placement, i.e.

spawn(Node, Module, Function, Args) — pid() J

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang

Distributed Erlang Scalability Limitations

Global operations

@ Global operations, i.e. registering names using global module

Scalability of distributed Erlang with different frequencies of global operation
P2P commands: spawn, RPC
Global operations: register_name, unregister_name

1e+009 T T T T T T

9e+008

8e+008

7e+008

6e+008

5e+008

4e+008

3e+008

Throughput (successful operations)

2e+008

1e+008

Number of nodes

. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang

Distributed Erlang Scalability Limitations

Global operations
@ Global operations, i.e. registering names using global module

@ Other global operations, e.g. using rpc:call to call multiple nodes

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang

Distributed Erlang Scalability Limitations

Global operations
@ Global operations, i.e. registering names using global module
@ Other global operations, e.g. using rpc:call to call multiple nodes

All-to-all transitive connections

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang

Distributed Erlang Scalability Limitations

Global operations

@ Global operations, i.e. registering names using global module

@ Other global operations, e.g. using rpc:call to call multiple nodes
All-to-all transitive connections

But... aren't global operations and transitivity are optional in
distributed Erlang? Why use them if they are a bottleneck?

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang

Distributed Erlang Scalability Limitations

Global operations

@ Global operations, i.e. registering names using global module

@ Other global operations, e.g. using rpc:call to call multiple nodes
All-to-all transitive connections
But... aren't global operations and transitivity are optional in
distributed Erlang? Why use them if they are a bottleneck?

@ Reliability and fault tolerance — when a process or a node fail, the
remaining nodes know about that. The same holds for the recovery

@ [t's already there — no extra effort to connect nodes and distribute
information

@ Easy to scale — a new node knows about running nodes, and vice
versa

N. Chechina, RELEASE team Scaling Distributes Systems

Scalable Distributed (SD) Erlang ill:e)tvli(r)lingca\abi\ity

Validation
Semi-Explicit Placement

Scalable Distributed (SD) Erlang

SD Erlang is a small conservative extension of Distributed Erlang
o Network Scalability

o All-to-all connections are not scalable onto 1000s of nodes
o Aim: Reduce connectivity

o Semi-explicit Placement

o Becomes not feasible for a programmer to be aware of all nodes
o Aim: Automatic process placement in groups of nodes

N. Chechina, RELEASE team Scaling Distributes Systems

SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Scalable Distributed (SD) Erlang

Free Node Connections vs. S_group Node Connections

N. Chechina, RELEASE team Scaling Distributes Systems

SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Scalable Distributed (SD) Erlang

Free Node Connections vs. S_group Node Connections

°°°s o°%o

N. Chechina, RELEASE team Scaling Distributes Systems

SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Scalable Distributed (SD) Erlang

Free Node Connections vs. S_group Node Connections

°°°s o°%o

N. Chechina, RELEASE team Scaling Distributes Systems

SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Scalable Distributed (SD) Erlang

Free Node Connections vs. S_group Node Connections

°°°s o°%o

‘.

N. Chechina, RELEASE team Scaling Distributes Systems

SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Scalable Distributed (SD) Erlang

Free Node Connections vs. S_group Node Connections

°°°s o°%o

Gl G2 G2
S2 I
S1

N. Chechina, RELEASE team Scaling Distributes Systems

Scalable Distributed (SD) Erlang

SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Connections between Different Types of Nodes

N. Chechina, RELEASE team

Transitive connection
Non-transitive connection

Scaling Distributes Systems

Scalable Distributed (SD) Erlang

SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Connections between Different Types of Nodes

N. Chechina, RELEASE team

Transitive connection
Non-transitive connection

Scaling Distributes Systems

Scalable Distributed (SD) Erlang

SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Connections between Different Types of Nodes

N. Chechina, RELEASE team

Transitive connection
Non-transitive connection

Scaling Distributes Systems

Scalable Distributed (SD) Erlang

SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Connections between Different Types of Nodes

N. Chechina, RELEASE team

Transitive connection
Non-transitive connection

Scaling Distributes Systems

Scalable Distributed (SD) Erlang

SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Connections between Different Types of Nodes

N. Chechina, RELEASE team

Transitive connection
Non-transitive connection

Scaling Distributes Systems

Scalable Distributed (SD) Erlang

SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Connections between Different Types of Nodes

N. Chechina, RELEASE team

Transitive connection
Non-transitive connection

Scaling Distributes Systems

SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Scalable Distributed (SD) Erlang

Why S_groups?

Preserve Erlang phylosophy & transitivity and scale
Considered approaches

@ Grouping nodes according to their hash values
@ A hierarchical approach
o Overlapping s_groups
Other approaches
o Distributed Erlang global_groups
@ Spapi Router (SpilGames)

@ Custom routing on non-transtively connected normal or
hidden nodes

N. Chechina, RELEASE team Scaling Distributes Systems

SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Scalable Distributed (SD) Erlang

Hierarchical Grouping

N. Chechina, RELEASE team Scaling Distributes Systems

SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Scalable Distributed (SD) Erlang

Free Nodes and S_groups

ClientNode ClientNode ClientNode

SubrouterNode

SubrouterNode

broste ne

Subrouar ... [subrouar

Subrouter s

Subrover | .. subroutar

Subrouter | ... [subrouar

ServerNode

ServerNode

sarver_sup

server_sup

= =1 = g =l = = Rl==
[(wizamer)~ (Farsener) e (wizame)~ ((Fasene) (rarsener] - ((arsener)

[— [—
Clizntoa, Ciint D8,

SubrouterSGroup
echina, RELEASE tea Scaling Distributes Systems

SubrouterSGroup

SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Scalable Distributed (SD) Erlang

Embedded Grouping

N. Chechina, RELEASE team Scaling Distributes Systems

SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Scalable Distributed (SD) Erlang

SD Erlang Improves Scalability

Scalability comparison with 0.01% global operations

1e+009 T T T T T T T -
: Disributed Erlang —+—

-
9e+008 [sD Er\an_g{_*—xf i

Be+008 |- ‘ P B

7e+008 |-

6e+008 [

5e+008 [

4e+008 [~ : . N

Throughput (successful operations)

3e+008 |- : ; ; : ; : R

2e+008 [

Leva0 i ‘ ‘ ‘ ‘ ‘ ‘ ‘
10 20 30 40 50 60 70 80 90 100

Number of nodes

hechina, RELEASE team Scaling Distributes Systems

SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Speed Up of Distributed Erlang Orbit & SD Erlang Orbit

Scalable Distributed (SD) Erlang

D-Orbt on Athos (SD Erang/OTP 17.4)

& — - - - - - - - - - - - -
W ———
W ———

w b 4
e ———
e ———

w0

w0 .

0 H

- .

"

w b 4

0 4

O MR 2t ees MG Bifs) (ol 21GSe IR 1G1GSSY 191 2012y 216308 218 25TSHGR)
Namberof rdes
echina, RELEASE team Scaling Distributes Systems

SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Scalable Distributed (SD) Erlang

Speed Up of Distributed Erlang ACO & SD Erlang ACO

2e+007 T

T
Reliable ACO —— 1
Scalable Reliable ACO A
Unreliable ACO 1

1.8e+007 -
1.6e+007 -
1.4e+007 -
1.2e+007

1e+007 |-

8e+006 [~

Runtime (rmillisecond)

Ge+006 o

4e+106

2e+Hl06

o i i i i i i i i i
17 26 37 50 63 82 101 122 145

Number of Nodes

. Chechina, RELEASE team Scaling Distributes Systems

SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Scalable Distributed (SD) Erlang

Semi-Explicit Placement

@ Communication latencies between nodes may vary according
to their relative positions

@ In terms of communication time nodes may be “nearby” or
“far away”

@ We may wish some tasks to be close together because they're
communicating with each other a lot

N. Chechina, RELEASE team Scaling Distributes Systems

Scalable Distributed (SD) Erlang illztxstl;lil%ca\abi\ity

Validation
Semi-Explicit Placement

System structure

. Chechina, RELEASE team Scaling Distributes Systems

Scalable Distributed (SD) Erlang illztxstl;lil%ca\abi\ity

Validation
Semi-Explicit Placement

Example: system structure

DD bl

Racks

Chechina, RELEASE team Scaling Distributes Systems

Scalable Distributed (SD) Erlang illztxstl;lil%ca\abi\ity

Validation
Semi-Explicit Placement

Example: system structure

IdgﬁgoooG.o

Clusters

Chechina, RELEASE team Scaling Distributes Systems

Scalable Distributed (SD) Erlang illztxstl;lil%ca\abi\ity

Validation
Semi-Explicit Placement

Example: system structure

Chechina, RELEASE team Scaling Distributes Systems

Network Scalability

SD Erlang

o
S
w
a
&
o

Q
g

5
Q2
-

5
e
=}
©
Q2
=

©

1%
%]

Validation

Semi-Explicit Placement

Dendrogram

nsesajeure

SuIso
Jojued
uoiago

auoydasiad

ceimq

Mg
0emq
zamgq
604Mq
coimq
62Mmq
Saimq
veimq
6TIMq
vTIMmq
TENMq
Tamq
0zyma
ToNIMG

9zImq
LTMq
oTHMq
L04mq
voImq
€amq
8zimq
8TIMG

£emq
Lamq
80)IMq
cuimgq
904Mmq

EAMQ
Soimq
eomq
STIMG
ETHMq
9TIMg

T T T
0000€ 00052 00002

wbleH

000ST 0000T

istributes Systems

Scali

echina, RELEASE team

SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Scalable Distributed (SD) Erlang

Measuring communication distance

We can define a distance function d on the set V of Erlang VMs in
a distributed system by

0 ifx=y
d(x,y) = {25()(’),) if x £ y.

where {(x,y) is the length of the longest path which is shared by
the paths from the root to x and y.

N. Chechina, RELEASE team Scaling Distributes Systems

Scalable Distributed (SD) Erlang illztxstl;lil%ca\abi\ity

Validation
Semi-Explicit Placement

Distances

Chechina, RELEASE team Scaling Distributes Systems

Scalable Distributed (SD) Erlang illztxstl;lil%ca\abi\ity

Validation
Semi-Explicit Placement

Distances

N. Chechina, RELEASE team Scaling Distributes Systems

Scalable Distributed (SD) Erlang illztxstl;lil%ca\abi\ity

Validation
Semi-Explicit Placement

Distances

Chechina, RELEASE team Scaling Distributes Systems

SD Erlang

Network Scalability
Validation
Semi-Explicit Placement

Scalable Distributed (SD) Erlang

choose nodes/1

o Every node may have a list of attributes

o choose_nodes/1 function returns a list of nodes that satisfy
given restrictions

s_group:choose_nodes ([Parameter]) -> [Nodel
where
Parameter = {s_group, SGroupName} | {attribute, AttributeNamel}
| {nearer, 0.4} | {between, 0.5, 0.7}
SGroupName = group_name ()
AttributeName = term()

N. Chechina, RELEASE team Scaling Distributes Systems

S_group Operational Semantics

Oppaztienel Samemies Validation of SD Erlang Semantics and Implementation

Operational Semantics

(state, command, ni) — (state’, value)

Executing command on node ni in state returns value and
transitions to state’.

N. Chechina, RELEASE team Scaling Distributes Systems

Operational Semantics S_group Operational Semantics
P Validation of SD Erlang Semantics and Implementation

Validation of Semantics and Implementation

o Validate the consistency between the formal semantics and
the SD Erlang implementation

o Use Erlang QuickCheck tool developed by QuviQ

@ Behaviour is specified by properties expressed in a logical form
@ eqc_statem is a finite state machine in QuickCheck

SD Erlang operational

semantics
l n Distributed Erlang
Abstract s_group

System with SD

model in Erlang [~ | command Erlang support

|

New abstract) Postcondition New concrete
State Validator State

Figure: Testing SD Erlang Using QuickCheck eqc_statem

N. Chechina, RELEASE team Scaling Distributes Systems

Plans

Ongoing and Future Work

S_groups
o Introduce more patterns, for example, routing for a tree
structure
@ Analysis of fault tolerance strategies and features in SD
Erlang applications
Semi-explicit Placement
o Discovering system structure at runtime

@ Robustness — dynamically adjusting a view of the system if
new nodes join it, or if existing ones fail

N. Chechina, RELEASE team Scaling Distributes Systems

Sources

Sources

e SD Erlang http://www.dcs.gla.ac.uk/research/sd-erlang/
o RELEASE Project http://www.release-project.eu/

Deployment tool

e Wombat https://www.erlang-solutions.com/products/wombat
Profiling tools

@ Percept2 https://github.com /release-project/percept2

@ devo https://www.youtube.com/watch?v=0x30TBDcFPw
Benchmarking

@ BenchErl http://release.softlab.ntua.gr/bencherl /index.html

o DEbench, Orbit, ACO
https://github.com /release-project/benchmarks

N. Chechina, RELEASE team Scaling Distributes Systems

Sources

Thank you!

. Chechina, RELEASE team Scaling Distributes Systems

Sources

@ J. Armstrong.
Erlang.
Commun. ACM, 53:68-75, 2010.

N. Chechina, RELEASE team Scaling Distributes Systems

	Distributed Erlang
	Scalable Distributed (SD) Erlang
	SD Erlang
	Network Scalability
	Validation
	Semi-Explicit Placement

	Operational Semantics
	S_group Operational Semantics
	Validation of SD Erlang Semantics and Implementation

	Plans
	Sources

