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@ 2011: Received PhD degree in Computer Science from
Heriot-Watt University, UK

@ 2011-2015: WP3 lead in the EU RELEASE Project at
Glasgow University, UK

@ March 2015: Research Fellow at Glasgow University, UK

Main research interest: Scaling distributed computations on
commodity hardware
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Sources

@ Research findings
o Experience from the RELEASE project
o Funded by EU FP7 Framework
o 5 academic & 3 industrial partners
o Aim: To scale the radical actor (concurrency-oriented)
paradigm to build reliable general-purpose software, such as
server-based systems, on massively parallel machines (10°
cores)
o Erlang programming language

o Experience of other researches and developers
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Scaling a Sysem

Scaling ALL aspects of computation

Application
Language
Virtual Machine

o

o

@ In-memory data structures
o Persistent data structures
°

Tools (debugging, monitoring, etc)
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Scaling on language level

@ Actor model

@ Functional programming
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Language — Actor Model

Built-in concurrency
@ Actors have own states and don't share them
@ Communication between actor happens only via message
passing

@ Actors can spawn new actors
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Language — Functional programming

Fundamental operation — application of functions to arguments
@ Higher-order functions — well-structured software
@ Modules — independent, reusable
o Lazy evaluations

o Variables given values only once
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Fault Tolerance

@ 10° cores — approx. failure of 1 core per hour

@ Non-defensive approach — Supervision & "Let it crash”
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Philosophy

@ Principles
o ldeas

@ Core values
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RELEASE Aim

To scale the radical actor (concurrency-oriented) paradigm to build
reliable general-purpose software, such as server-based systems, on
massively parallel machines (10° cores).
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RELEASE Aim

To scale the radical actor (concurrency-oriented) paradigm to build
reliable general-purpose software, such as server-based systems, on
massively parallel machines (10° cores).
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Typical Target Architecture - 10° cores

o Commodity hardware
@ Non-uniform communication
(Level0 — same host, Levell — same cluster, etc)

Cloud 3

Cloud 1
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Erlang Overview

Erlang

@ is a functional general purpose concurrent programming
language developed in 1986 at Ericsson

@ is dynamically typed

o was designed for distributed, fault-tolerant, massively
concurrent, and soft-real time systems

o follows /et it crash and share nothing philosophy

The language primitives are processes.
Erlang concurrency is handled by the language and not by the
operating system [Arm10].
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Distributed Erlang

Distributed Erlang

Distributed Erlang
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Distributed Erlang

Distributed Erlang

@ Transitive connections
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Distributed Erlang

Distributed Erlang

@ Transitive connections
o Explicit Placement, i.e.

spawn(Node, Module, Function, Args) — pid() J
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Distributed Erlang

Distributed Erlang Scalability Limitations

Global operations

@ Global operations, i.e. registering names using global module

Scalability of distributed Erlang with different frequencies of global operation
P2P commands: spawn, RPC
Global operations: register_name, unregister_name
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Distributed Erlang

Distributed Erlang Scalability Limitations

Global operations
@ Global operations, i.e. registering names using global module

@ Other global operations, e.g. using rpc:call to call multiple nodes
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Distributed Erlang

Distributed Erlang Scalability Limitations

Global operations
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Distributed Erlang

Distributed Erlang Scalability Limitations

Global operations

@ Global operations, i.e. registering names using global module

@ Other global operations, e.g. using rpc:call to call multiple nodes
All-to-all transitive connections

But... aren't global operations and transitivity are optional in
distributed Erlang? Why use them if they are a bottleneck?
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Distributed Erlang

Distributed Erlang Scalability Limitations

Global operations

@ Global operations, i.e. registering names using global module

@ Other global operations, e.g. using rpc:call to call multiple nodes
All-to-all transitive connections
But... aren't global operations and transitivity are optional in
distributed Erlang? Why use them if they are a bottleneck?

@ Reliability and fault tolerance — when a process or a node fail, the
remaining nodes know about that. The same holds for the recovery

@ [t's already there — no extra effort to connect nodes and distribute
information

@ Easy to scale — a new node knows about running nodes, and vice
versa
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Scalable Distributed (SD) Erlang ill:e)tvli(r)lingca\abi\ity

Validation
Semi-Explicit Placement

Scalable Distributed (SD) Erlang

SD Erlang is a small conservative extension of Distributed Erlang
o Network Scalability

o All-to-all connections are not scalable onto 1000s of nodes
o Aim: Reduce connectivity

o Semi-explicit Placement

o Becomes not feasible for a programmer to be aware of all nodes
o Aim: Automatic process placement in groups of nodes
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SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Scalable Distributed (SD) Erlang

Free Node Connections vs. S_group Node Connections
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SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Scalable Distributed (SD) Erlang

Free Node Connections vs. S_group Node Connections
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Scalable Distributed (SD) Erlang

SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Connections between Different Types of Nodes
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SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Scalable Distributed (SD) Erlang

Why S_groups?

Preserve Erlang phylosophy & transitivity and scale
Considered approaches

@ Grouping nodes according to their hash values
@ A hierarchical approach
o Overlapping s_groups
Other approaches
o Distributed Erlang global_groups
@ Spapi Router (SpilGames)

@ Custom routing on non-transtively connected normal or
hidden nodes
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SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Scalable Distributed (SD) Erlang

Hierarchical Grouping
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SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Scalable Distributed (SD) Erlang

Free Nodes and S_groups
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SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Scalable Distributed (SD) Erlang

Embedded Grouping
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SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Scalable Distributed (SD) Erlang

SD Erlang Improves Scalability

Scalability comparison with 0.01% global operations
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SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Speed Up of Distributed Erlang Orbit & SD Erlang Orbit

Scalable Distributed (SD) Erlang

D-Orbt on Athos (SD Erang/OTP 17.4)
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SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Scalable Distributed (SD) Erlang

Speed Up of Distributed Erlang ACO & SD Erlang ACO
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SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Scalable Distributed (SD) Erlang

Semi-Explicit Placement

@ Communication latencies between nodes may vary according
to their relative positions

@ In terms of communication time nodes may be “nearby” or
“far away”

@ We may wish some tasks to be close together because they're
communicating with each other a lot
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Scalable Distributed (SD) Erlang illztxstl;lil%ca\abi\ity

Validation
Semi-Explicit Placement

System structure
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Scalable Distributed (SD) Erlang illztxstl;lil%ca\abi\ity

Validation
Semi-Explicit Placement

Example: system structure
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Scalable Distributed (SD) Erlang illztxstl;lil%ca\abi\ity

Validation
Semi-Explicit Placement

Example: system structure
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Scalable Distributed (SD) Erlang illztxstl;lil%ca\abi\ity

Validation
Semi-Explicit Placement

Example: system structure
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Network Scalability

SD Erlang
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SD Erlang

Network Scalability
Validation

Semi-Explicit Placement

Scalable Distributed (SD) Erlang

Measuring communication distance

We can define a distance function d on the set V of Erlang VMs in
a distributed system by

0 ifx=y
d(x,y) = {25()(’),) if x £ y.

where {(x,y) is the length of the longest path which is shared by
the paths from the root to x and y.
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Scalable Distributed (SD) Erlang illztxstl;lil%ca\abi\ity

Validation
Semi-Explicit Placement

Distances
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Validation
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Validation
Semi-Explicit Placement

Distances
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SD Erlang

Network Scalability
Validation
Semi-Explicit Placement

Scalable Distributed (SD) Erlang

choose nodes/1

o Every node may have a list of attributes

o choose_nodes/1 function returns a list of nodes that satisfy
given restrictions

s_group:choose_nodes ([Parameter]) -> [Nodel
where
Parameter = {s_group, SGroupName} | {attribute, AttributeNamel}
| {nearer, 0.4} | {between, 0.5, 0.7}
SGroupName = group_name ()
AttributeName = term()
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S_group Operational Semantics

Oppaztienel Samemies Validation of SD Erlang Semantics and Implementation

Operational Semantics

(state, command, ni) — (state’, value)

Executing command on node ni in state returns value and
transitions to state’.
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Operational Semantics S_group Operational Semantics
P Validation of SD Erlang Semantics and Implementation

Validation of Semantics and Implementation

o Validate the consistency between the formal semantics and
the SD Erlang implementation

o Use Erlang QuickCheck tool developed by QuviQ

@ Behaviour is specified by properties expressed in a logical form
@ eqc_statem is a finite state machine in QuickCheck

SD Erlang operational

semantics
l n Distributed Erlang
Abstract s_group

System with SD

model in Erlang [~ | command Erlang support

|

New abstract ) Postcondition New concrete
State Validator State

Figure: Testing SD Erlang Using QuickCheck eqc_statem
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Plans

Ongoing and Future Work

S_groups
o Introduce more patterns, for example, routing for a tree
structure
@ Analysis of fault tolerance strategies and features in SD
Erlang applications
Semi-explicit Placement
o Discovering system structure at runtime

@ Robustness — dynamically adjusting a view of the system if
new nodes join it, or if existing ones fail
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Sources

Sources

e SD Erlang http://www.dcs.gla.ac.uk/research/sd-erlang/
o RELEASE Project http://www.release-project.eu/

Deployment tool

e Wombat https://www.erlang-solutions.com/products/wombat
Profiling tools

@ Percept2 https://github.com /release-project/percept2

@ devo https://www.youtube.com/watch?v=0x30TBDcFPw
Benchmarking

@ BenchErl http://release.softlab.ntua.gr/bencherl /index.html

o DEbench, Orbit, ACO
https://github.com /release-project/benchmarks
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Sources

Thank you!
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Sources

@ J. Armstrong.
Erlang.
Commun. ACM, 53:68-75, 2010.
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