
Last Updated: June. 2015

Containers in Production with
Docker, CoreOS, Kubernetes and

Apache Stratos

**

About Me

Lakmal Warusawithana
Vise President, Apache Stratos
Director - Cloud Architecture, WSO2 Inc
lakmal@apache.org / lakmal@wso2.com
Twitter : lakwarus

mailto:lakmal@apache.org
mailto:lakmal@wso2.com
mailto:lakmal@apache.org

**

Agenda

๏ Introduction to Apache Stratos
๏ Apache Stratos Architecture
๏ Does Docker Production ready?
๏ Introduction to CoreOS, Flannel, Kubernetes
๏ Apache Stratos 4.1 – Containerization and Composition

Release
๏ Apache Stratos with Docker

- Kubernetes Resources Used by Stratos
๏ Why Composite Application Support?
๏ Discuss few Apache Stratos features
๏ Demo - Docker, Kubernetes with autoscaling

**

Apache Stratos

๏ Apache Stratos is a highly-extensible Platform-as-a-
Service (PaaS) framework that helps run Apache
Tomcat, PHP, and MySQL applications and can be
extended to support many more environments on all
major cloud infrastructures

๏ Stratos initially developed by WSO2 and last year
donated to Apache Software Foundation

๏ After successfully complete the incubating process
Stratos now graduated as Top Level Project

**

Apache Stratos Layered Architecture

**

Apache Stratos Cartridges

**

๏ Docker network?
- Deploying in Docker host cluster

๏ Can run enterprise apps in a single docker container?
๏ Problems of running enterprize appl in multiple docker

containers?
- File System sharing?
- Network sharing?
- Process space
- How to identified an unit?

Does Docker Production Ready?

**

๏ Application Composition
๏ Containerization

๏ Docker based cartridge support
๏ integration with CoreOS
๏ integration with Kubernetes
๏ integration with flannel
๏ integration with discovery service and build in docker

registry support

Apache Stratos 4.1 – Containerization and
Composition Release

**

What is CoreOS?

**

CoreOS Cluster

**

What is Flannel?

**

What is Kubernetes?

๏ Kubernetes is a platform for hosting Docker containers
in a clustered environment with multiple Docker hosts

๏ Provides container grouping, load balancing, auto-
healing, manual scaling features ...etc

๏ Project was started by Google

๏ Contributors == Google, CodeOS, Redhat, Mesosphere,
Microsoft, HP, IBM, VMWare, Pivotal, SaltStack, etc

**

Kubernetes with CoreOS

**

Apache Stratos L1 Architecture for Docker
based Cartridges

**

Stratos Architecture with Docker Support

*

Kubernetes Resources Used by Stratos

● A Kubernetes Service is created
for each transport/port mapping
defined in the cartridge.

● Kubernetes Service is a load
balancing service for Pods.

● A Kubernetes Pod is created for
each member in a cluster.

● A Kubernetes Pod is a group of
Docker containers.

● Kubernetes creates a separate
Docker container for networking.

**

Why Composite Application Support?

๏ Real world application are complex and required
multiple heterogeneous service runtimes (Cartridges)
to host the application

๏ These Cartridges may have dependencies to each other
- startup order
- dependency ratio
- dependent scaling
- termination behaviors
- data sharing

๏ Capable of creating Cartridge group and it provide
more flexibility to handle group behaviours such as
group scaling, load balancing..etc

๏ Capable of creating blueprint of an application runtime
by using simple structured json payload

**

Cartridge Group

*

Sample Group Definition

**

What is it?
๏ Scaling algorithm can use multiple factors. such as

- Load average of the instance
- Memory consumption of the instance
- In-flight request count in LB

Multi-factored Auto Scaling

**

๏ Capable of predicting future load
- Real time analysis of current load status using CEP
 integration
- Predict immediate future load based on CEP
 resulting streams
- Predicting equation s=ut + ½ at2

- s=predicted load, u=first derivative of current
 average load, t=time interval , a=second derivative
 of current load

Why should one care?
๏ Maximise resource utilization
๏ Easy to do capacity planning
๏ Dynamic load based resource provisioning
๏ Optimizing across multiple clouds

Multi-factored Auto Scaling...

**

How Scalable it is?
๏ In theory infinite

- horizontal scaling
- limited by resource (instance capacity) availability

How Dynamic it is?
๏ Load Balancers are spawned dynamically

- LB too is a cartridge
๏ In case of multi-cloud, multi-region, LB can scale per

cloud/region
๏ Per service cluster LB

Scalable and Dynamic Load Balancing

**

What is unique about Stratos
๏ Cartridge based LB model
๏ Can bring any third-party LB

- HAProxy, nginx, AWS ELB
- As easy as plugging into LB extension API

Scalable and Dynamic Load Balancing..

*

Stratos Load Balancer Extension Architecture

**

What are the smart policies?
๏ Auto scaling
๏ Deployment

Auto scaling policy
๏ Define thresholds values pertaining scale up/down

decision
๏ Auto Scaler refer this policy
๏ Defined by DevOps

Deployment policy
๏ Defined how and where to spawn cartridge instances
๏ Defined min and max instances in a selected service

cluster
๏ Defined by DevOps based on deployment patterns

Smart Policies

**

Why should one care?
๏ Can provide cloud SLA

What are the advantages?
๏ Make DevOps life easy

- help keep to SLA
๏ Make SaaS app delivery life easy

- do not have to worry about availability in application
 layer

Smart Policies

*

Composite Application Model and Policy Model

**

What is it?
๏ Expanding/provisioning application into another cloud

to handle peak load.
Why Should one care?
๏ Resource peak time can be off-loaded to third party

clouds/resources
What is unique about it?
๏ Can off-load to any cloud

- Private, Public and Hybrid
๏ Whole application can replicated into bursting cloud

with all configuration
๏ Can migrate application into another cloud without

downtime

Cloud Bursting

**

What details are?
๏ Instance up/down time
๏ Each and every instances health status

- application health, load average, memory
 consumption

๏ Application logs
Why should one care?
๏ Centralize view for all logging, metering and monitoring

What are the advantages?
๏ DevOps life easy

- centralized log viewer
- centralized dashboard

๏ Easy to throttling

Logging, Metering and Monitoring

**

Demo - Docker, Kubernetes with autoscaling

**

More Information !

๏ http://stratos.apache.org
๏ http://lakmalsview.blogspot.com/2013/12/sneak-peek-

into-apache-stratos.html
๏ https://cwiki.apache.org/confluence/display/STRATOS/
๏ https://github.com/coreos/flannel
๏ https://www.youtube.com/watch?v=tsk0pWf4ipw

http://stratos.apache.org
http://stratos.apache.org
http://lakmalsview.blogspot.com/2013/12/sneak-peek-into-apache-stratos.html
http://lakmalsview.blogspot.com/2013/12/sneak-peek-into-apache-stratos.html
http://lakmalsview.blogspot.com/2013/12/sneak-peek-into-apache-stratos.html
https://cwiki.apache.org/confluence/display/STRATOS/4.1.0+Stratos+M2+Developer+Preview
https://cwiki.apache.org/confluence/display/STRATOS/4.1.0+Stratos+M2+Developer+Preview
https://github.com/coreos/flannel
https://github.com/coreos/flannel
https://www.youtube.com/watch?v=tsk0pWf4ipw
https://www.youtube.com/watch?v=tsk0pWf4ipw

Contact us !

