
Evan Krall
2015-06-12

Evan Krall
SRE = development + sysadmin
4+ years at Yelp

Who is this person?

Paasta
Application Delivery at Yelp

Why?

History

Yelp started out as monolithic python app
Builds/pushes take a long time
Messing up is painful
So we build process to avoid messing up
Process makes pushes even slower

Service Oriented Architecture

Pull features out of monolith
Split into different applications
Smaller services -> faster pushes

fewer issues per push
total # of issues increases,
but we can fix issues faster.

Smaller parts -> easier to reason about
Bonus: can scale parts independently

SOA comes with challenges

Lots of services means lots of dependencies
Now your code is a ~distributed system~
If you thought running 1 app was hard, try 100

Standalone application
Stateless
Separate git repo
Usually, at Yelp:

HTTP API
Python, Pyramid, uWSGI
virtualenv

What is a service?

services responsible for providing init script
often not idempotent

central list of which hosts run which services
pull-model file transfers

reasonably reliable
push-model control (for host in hosts: ssh host ...)

What if hosts are down?
What if transfer hasn't completed yet?

Yelp SOA before Paasta

What is
Paasta?

What is Paasta?

Builds services
Deploys services
Interconnects services
Monitors services

Internal PaaS

What is Paasta?
Deploying

services should
be better!

Continuous
integration is

awesome!

Servers are not
snowflakes!

Declarative
control++

Monitor your
services!

Design
goals

Make ops happy

Fault tolerance
no single points of failure
recover from failures

Efficient use of resources
Simplify adding/removing resources

Make devs happy

We need adoption, but can't impose on devs
Must be possible to seamlessly port services

Must work in both datacenter and AWS
Must be compelling to developers

Features
Documentation
Flexibility

Make ourselves happy

Pick good abstractions
Avoid hacks
Write good tests
Don't reinvent the wheel: use open-source tools
Enforce opinions when necessary for scale

(paasta devs)

How

What runs in
production?
(or stage, or dev, or ...)

Scheduling: Decide where to run the code
Delivery: Get the code + dependencies onto boxes
Discovery: Tell clients where to connect
Alerting: Tell humans when things are wrong

What parts do we need?

Scheduling: Decide where to run the code
Delivery: Get the code + dependencies onto boxes
Discovery: Tell clients where to connect
Alerting: Tell humans when things are wrong

What parts do we need?

Static: humans decide
puppet/chef: role X gets service Y
static mappings: boxes [A,B,C,...] get service Y

simple, reliable
slow to react to failure, resource changes

Scheduling:
Decide where to run the code

Dynamic: computers decide
Mesos, Kubernetes, Fleet, Swarm
IaaS: dedicated VMs for service, let Amazon
figure it out.

Automates around failure, resource changes
Makes discovery/delivery/monitoring harder

Scheduling:
Decide where to run the code

Scheduling in Paasta:
Mesos + Marathon

Mesos is an "SDK for distributed systems",
not batteries-included.
Requires a framework

Marathon (ASGs for Mesos)
Can run many frameworks on same cluster
Supports Docker as task executor

mesosphere.io
mesos.apache.org

from http://mesos.apache.org/documentation/latest/mesos-architecture/

from http://mesos.apache.org/documentation/latest/mesos-architecture/

from http://mesos.apache.org/documentation/latest/mesos-architecture/

(Marathon)

(Docker)

Scheduling: Decide where to run the code
Delivery: Get the code + dependencies onto boxes
Discovery: Tell clients where to connect
Alerting: Tell humans when things are wrong

What parts do we need?

Push-based:
• for box in $boxes; do rsync code $box:/code

Simple, easy to tell when finished
what about failures?

retry, but how long?
how do we make sure new boxes get code?

cron deploys

Delivery:
Get the code + dependencies onto boxes

Delivery:

Pull-based:
cron job on every box downloads code

built-in retries
new boxes download soon after boot
have to wait for cron job

baked VM/container images
container/VM can't start on failure
ASG, Marathon will retry

Get the code + dependencies onto boxes

Shared
sudo {gem,pip,apt-get} install

lots of tooling exists already
shared = space/bandwidth savings
what if two services need different versions?
how to update a library that 20 services need?

Delivery:
Get the code + dependencies onto boxes

Isolated
virtualenv / rbenv / VM-per-service / Docker

more freedom for dev
services don't step on each others' toes
more disk/bandwidth
harder to audit for vulnerabilities

Delivery:
Get the code + dependencies onto boxes

Delivery in Paasta:
Docker

Containers: like lightweight VMs
Provides a language (Dockerfile)
for describing container image
Reproducible builds (mostly)
Provides software flexibility

docker.com

Scheduling: Decide where to run the code
Delivery: Get the code + dependencies onto boxes
Discovery: Tell clients where to connect
Alerting: Tell humans when things are wrong

What parts do we need?

Static:
Constants in code
Config files
Static records in DNS

Simple, reliable
Slow reaction time

Discovery:
Tell clients where to connect

Dynamic:
Dynamic DNS zone
ELB
Zookeeper, Etcd, Consul
Store IPs in database, not text files

Reacts to change faster, allows better scheduling
Complex, can be fragile
Recursive: How do you know where ZK is?

Discovery:
Tell clients where to connect

in-process
DNS

Everyone supports DNS
TTLs are rarely respected, limit update rate
Lookups add critical-path latency

Talking to ZK, Etcd, Consul in service
Tricky. Risk of worker lockup if ZK hangs
Delegate to library

Few external dependencies

Discovery:
Tell clients where to connect

external
SmartStack, consul-template, vulcand
Reverse proxy on local box

Simpler client code (just hit localhost:$port)
Avoids library headaches
Easy cross-language support
Must be load-balanceable

Discovery:
Tell clients where to connect

Nerve registers services in ZooKeeper
Synapse discovers from ZK + writes HAProxy config
Registration, discovery, load balancing

Hard problems! Let's solve them once.

Provides migration path:
port legacy version to SmartStack
have Paasta version register in same pool

Discovery in Paasta:
Smartstack

nerds.airbnb.com/smartstack-service-discovery-cloud

mesos
slave

box2
client

nerve

HAProxy

synapse

box1
service

nerve

mesos
slave

synapse

HAProxy

Discovery in Paasta:
Smartstack

ZooKeeperMetadata
HTTP request

healthcheck

why bother with registration?
why not ask your scheduler?

Scheduler portability!

box3 service
(legacy)

nerve

puppet

synapse

HAProxy

mesos
slave

box2
client

nerve

HAProxy

synapse

box1
service

nerve

mesos
slave

synapse

HAProxy

Discovery in Paasta:
Smartstack

ZooKeeperMetadata
HTTP request

healthcheck

healthcheck

Every box runs HAProxy
Paper over network issues with retries
Load balancing scales with # of clients

Downside: lots of healthchecks
hacheck caches to avoid hammering services

Downside: many LBs means LB algorithms don't
work as well

There's no place
like 127.0.0.1*

*We actually use 169.254.255.254, because every container has its own 127.0.0.1

Scheduling: Decide where to run the code
Delivery: Get the code + dependencies onto boxes
Discovery: Tell clients where to connect
Alerting: Tell humans when things are wrong

What parts do we need?

Alerting:

Static
E.g. nagios, icinga
File-based configuration

Simple, familiar
Often not highly available
Hard to dynamically generate checks/alerts

Tell humans when things are wrong

Dynamic
e.g. Sensu, Consul
Allows you to add hosts & checks on the fly

Flexible
Generally newer, less battle-tested
Newer software is often built for high availability

Alerting:
Tell humans when things are wrong

Based around event bus
Replication monitoring

how many instances are up
in HAProxy?

Marathon app monitoring
is service failing to start?

Cron jobs on master boxes do checks, emit results.

Alerting in Paasta:
Sensu

sensuapp.org

Runtime Components

Scheduling: Mesos+Marathon
Delivery: Docker
Discovery: SmartStack
Alerting: Sensu

How do we
control this thing?

Primary control plane
Convenient access controls (via gitolite, etc)
deploys, stop/start/restart indicated by tags
less-frequently changed metadata stored in a repo

Declarative control

Describe end goal, not path
Helps us achieve fault tolerance.

"Deploy 12abcd34 to prod"
vs.

"Commit 12abcd34 should be running in prod"

Gas pedal vs. Cruise Control

editable by service authors
marathon-$cluster.yaml

how many instances to run?
canary
secondary tasks

smartstack.yaml
deploy.yaml

list of deploy steps
Boilerplate can be generated with paasta fsm

metadata repo

python 2.7 package, dh-virtualenv
CLI for users

control + visibility
cron jobs:

Collect information from git
Configure Marathon
Configure Nerve
Resilient to failure

This is how we build higher-order systems

paasta_tools

Bounce strategies
up-then-down:

wait for new version to start; kill old
down-then-up

wait for old version to die; start new
crossover

as instances of new version start, kill old
instances

Builds Docker images
Pushes to Docker registry
Marks image for deployment

GUI configuration is a Bad Idea,
so we automate it (deploy.yaml)
Most build steps call paasta command

Jenkins

Multi- Environment
Region
Datacenter

habitat AZ or cage 0.3ms

region AWS region, nearby cages 1ms

superregion nearby regions <5ms

ecosystem copy of site (dev/stage/prod)

Mesos cluster per superregion
Services choose at which level SmartStack works

Superregion

Superregion

Superregion

Datacenter Datacenter

AWS Region

AWS Region
AWS Region

(region)

(region)

(region)

(region)

(region)

Walkthrough
Let's deploy a service

Wait for Jenkins...

Questions?

