Evan Krall
2015-06-12

@

Who is this person?

e Evan Krall
e SRE = development + sysadmin
e 4+ years at Yelp

Connecting people with great local businesses

Founded in 2004 Review Distribution Around the World
e We're operating in 29 locales
25t =QpNBI -
—_——ml# 1
S o - . -
Jeremy Stoppleman s e SRl J mmm
25% I ™ ¢

72 million via mobile 135 million monthly visitors

—————

4 w

‘05 ‘06 ‘07

You can find out more at yelp.com/careers

Paasta

Application Delivery at Yelp

History

Yelp started out as monolithic python app
Builds/pushes take a long time

Messing up is painful

So we build process to avoid messing up
Process makes pushes even slower

Service Oriented Architecture

Pull features out of monolith

Split into different applications

Smaller services -> faster pushes

e fewer issues per push

e total # of issues increases,

e but we can fix issues faster.
Smaller parts -> easier to reason about
Bonus: can scale parts independently

SOA comes with challenges

e Lots of services means lots of dependencies
e Now your code is a ~distributed system~
e [f you thought running 1 app was hard, try 100

What Is a service?

Standalone application
Stateless

Separate git repo

Usually, at Yelp:

e HTTP API

e Python, Pyramid, uWSGI
e virtualenv

Yelp SOA before Paasta

services responsible for providing init script

e often not idempotent

central list of which hosts run which services
pull-model file transfers

e reasonably reliable

push-model control (for host in hosts: ssh host ...)
e What if hosts are down?

 What if transfer hasn't completed yet?

Paasta®”?

What is Paasta”?

Internal PaaS

Builds services
Deploys services
Interconnects services
Monitors services

What is Paasta?

Deploying Servers are not

services should snowflakes!
be better!

Declarative
Continuous control++

integration is

awesome! :
Monitor your

services!

goals

Make ops happy

e Fault tolerance
e no single points of failure
e recover from failures
o Efficient use of resources
e Simplify adding/removing resources

Make devs happy

e We need adoption, but can't impose on devs
e Must be possible to seamlessly port services
e Must work in both datacenter and AWS
e Must be compelling to developers

e Features
e Documentation
e Flexibility

Make ourselves happy

(paasta devs)

Pick good abstractions

Avoid hacks

Write good tests

Don't reinvent the wheel: use open-source tools
Enforce opinions when necessary for scale

What runs In
production?

(or stage, or dev, or ...)

What parts do we need?

Scheduling: Decide where to run the code
Delivery: Get the code + dependencies onto boxes
Discovery: Tell clients where to connect

Alerting: Tell humans when things are wrong

What parts do we need?

Scheduling: Decide where to run the code
Delivery: Get the code + dependencies onto boxes
Discovery: Tell clients where to connect

Alerting: Tell humans when things are wrong

Scheduling:

Decide where to run the code

e Static: humans decide
e puppet/chef: role X gets service Y
e static mappings: boxes [A,B,C,...] get service Y

e simple, reliable
e slow to react to failure, resource changes

Scheduling:

Decide where to run the code

e Dynamic: computers decide

Mesos, Kubernetes, Fleet, Swarm
laaS: dedicated VMs for service, let Amazon

figure it out.

Automates around failure, resource changes
Makes discovery/delivery/monitoring harder

Scheduling in Paasta:
Mesos + Marathon

Mesos is an "SDK for distributed systems"”,

not batteries-included. MARATHON
Requires a framework
e Marathon (ASGs for Mesos) ‘}

Can run many frameworks on same cluster
Supports Docker as task executor

P
>
S

mesosphere.io
mesos.apache.org

<
2

Hadoop
scheduler

MPI

scheduler

Mesos slave| | Mesos slave

Hadoop
executor executor

task |

MPI

task

Mesos slave

Hadoop
executor

MPI
executor

task

task

ZooKeeper
quorum

from http://mesos.apache.org/documentation/latest/mesos-architecture/

:

Standby
master

ZooKeeper
quorum

Standby
master

_.master | | master _

Mesos slave| | Mesos slave
task |

Mesos slave

from http://mesos.apache.org/documentation/latest/mesos-architecture/

(Marathon)

Framework 1 Framework 2
Job 1 Job 2 Job 1 Job 2
FW Scheduler | FW Scheduler

<task1, s1, 2cpu, 1gb, ... >

<s1, 4cpu, 4gb, ... :"\(\ab <task2, s1, 1cpu, 2gb, ... >]
% -

Allocation Mesos

module master

» 3

<s1, 4cpu, 4gb, ... > (1 <fw1, task1, 2cpu, 1gb, ... >
<fw1, task2, 1cpu, 2gb, ... >

(Docker) =Et -

Executor
Task Task

from http://mesos.apache.org/documentation/latest/mesos-architecture/

What parts do we need?

Scheduling: Decide where to run the code
Delivery: Get the code + dependencies onto boxes
Discovery: Tell clients where to connect

Alerting: Tell humans when things are wrong

Delivery:
Get the code + dependencies onto boxes
e Push-based:

e for box in S$boxes; do rsync code $box:/code

e Simple, easy to tell when finished

e what about failures?
e retry, but how long?

e how do we make sure new boxes get code?
e cron deploys

Delivery:
Get the code + dependencies onto boxes

e Pull-based:

e cron job on every box downloads code
e Dbuilt-in retries
e new boxes download soon after boot
e have to wait for cron job

 baked VM/container images
e container/VM can't start on failure
e ASG, Marathon will retry

Delivery:
Get the dependencies onto boxes

e Shared
e sudo {gem,pip,apt-get} install

lots of tooling exists already

shared = space/bandwidth savings

what if two services need different versions?
how to update a library that 20 services need?

Delivery:
Get the dependencies onto boxes

e |solated
e virtualenv / rbenv / VM-per-service / Docker

more freedom for dev

services don't step on each others' toes
more disk/bandwidth

harder to audit for vulnerabilities

Delivery in Paasta:
Docker

« Containers: like lightweight VMs -
 Provides a language (Dockerfile)

for describing container image doc ke r
e Reproducible builds (mostly)
* Provides software flexibility

O

docker.com

What parts do we need?

Scheduling: Decide where to run the code
Delivery: Get the code + dependencies onto boxes
Discovery: Tell clients where to connect

Alerting: Tell humans when things are wrong

Discovery:
Tell clients where to connect

o Static:
e Constants in code
e Config files
o Static records in DNS

e Simple, reliable
e Slow reaction time

Discovery:
Tell clients where to connect

e Dynamic:
e Dynamic DNS zone
e ELB
e Zookeeper, Etcd, Consul
e Store IPs in database, not text files

Reacts to change faster, allows better scheduling
e Complex, can be fragile
 Recursive: How do you know where ZK is?

Discovery:
Tell clients where to connect

e in-process

e DNS
e Everyone supports DNS
e TTLs are rarely respected, limit update rate
e Lookups add critical-path latency

e Talking to ZK, Etcd, Consul in service
e Tricky. Risk of worker lockup if ZK hangs
e Delegate to library

e Few external dependencies

Discovery:
Tell clients where to connect

e external
e SmartStack, consul-template, vulcand
e Reverse proxy on local box

Simpler client code (just hit localhost:$port)
Avoids library headaches

Easy cross-language support

Must be load-balanceable

Discovery in Paasta:
Smartstack

Nerve registers services in ZooKeeper

Synapse discovers from ZK + writes HAProxy config
Registration, discovery, load balancing

e Hard problems! Let's solve them once.

e Provides migration path:
e port legacy version to SmartStack
e have Paasta version register in same pool

nerds.airbnb.com/smartstack-service-discovery-cloud

Discovery in Paasta:
Smartstack

-
o

= <
5 \& | B
\&

%

o

Q

service
$

why bother with registration?
why not ask your scheduler?

Scheduler portability!

Discovery in Paasta:

Smartstack

box3

box?2

service SErvice client
mesos puppet (legacy) \
slave o6 / /
\(\c‘ﬁ\e X —
S)
l \(\e’b\ \(\efo\\ HAProxy
nerve nerve
synapse
\ \ _V v

— Metadata
— HITTPreq

\
g ZooKeeper

There's no place
like 127.0.0.17

e Every box runs HAProxy
e Paper over network issues with retries
e Load balancing scales with # of clients

e Downside: lots of healthchecks
e hacheck caches to avoid hammering services
e Downside: many LBs means LB algorithms don't
work as well

*We actually use 169.254.255.254, because every container has its own 127.0.0.1

What parts do we need?

Scheduling: Decide where to run the code
Delivery: Get the code + dependencies onto boxes
Discovery: Tell clients where to connect

Alerting: Tell humans when things are wrong

Alerting:
Tell humans when things are wrong

e Static
e E.g. nagios, icinga
* File-based configuration

e Simple, familiar
e Often not highly available
 Hard to dynamically generate checks/alerts

Alerting:
Tell humans when things are wrong

e Dynamic
e e.g. Sensu, Consul
e Allows you to add hosts & checks on the fly

e Flexible
e Generally newer, less battle-tested
 Newer software is often built for high availability

Alerting In Paasta:
Sensu

e Based around event bus
e Replication monitoring sensu
e how many instances are up
in HAProxy?
e Marathon app monitoring

e |s service failing to start?
e Cron jobs on master boxes do checks, emit results.

sensuapp.org

Runtime Components

Scheduling: Mesos+Marathon
Delivery: Docker

Discovery: SmartStack
Alerting: Sensu

How do we
control this thing?

Primary control plane

Convenient access controls (via gitolite, etc)
deploys, stop/start/restart indicated by tags
less-frequently changed metadata stored in a repo

Declarative control

e Describe end goal, not path
 Helps us achieve fault tolerance.

"Deploy 12abcd34 to prod"
VS.
"Commit 12abcd34 should be running in prod”

Gas pedal vs. Cruise Control

metadata repo

editable by service authors
marathon-$cluster.yaml

e how many instances to run?

e canary

e secondary tasks

smartstack.yaml

deploy.yaml

e |ist of deploy steps

Boilerplate can be generated with paasta fsm

paasta tools

python 2.7 package, dh-virtualenv

CLI for users

e control + visibility

cron jobs:

e Collect information from git

e Configure Marathon

e Configure Nerve

e Resilient to failure

This is how we build higher-order systems

Bounce strategies

e up-then-down:
e wait for new version to start; kill old
e down-then-up
o wait for old version to die; start new
e crossover
e as instances of new version start, kill old
Instances

Jenkins

Builds Docker images
Pushes to Docker registry
Marks image for deployment

GUI configuration is a Bad Idea,
so we automate it (deploy.yaml)
Most build steps call paasta command

Environment

Multi-reger

Datacenter
habitat AZ or cage 0.3ms
region AWS region, nearby cages 1ms
superregion | nearby regions <5ms

ecosystem copy of site (dev/stage/prod)

e Mesos cluster per superregion
e Services choose at which level SmartStack works

(region)

AWS Reqi
(regi region)
Datace atacenter

AWS Region
(region)

Walkthrough

Let's deploy a service

krall@dev4-devc: ~/§ mkdir paasta_demo

krall@dev4-devc:~/pg$ cd paasta_demo/

krall@dev4-devc:~/pg/paasta_demo$ git init

Initialized empty Git repository in /nail/home/krall/pg/paasta_demo/.git/
krall@dev4-devc:~/pg/paasta_demo (master) $ cat > Dockerfile

FROM docker—dev.yelpcorp.com/trusty_yelp

RUN apt-get -y —force-yes install python3 wget
RUN wget —-r html5zombo.com

CMD cd /html5zombo.com && python3 -m http.server 9999

EXPOSE 9999
krall@dev4-devc:~/pg/paasta_demo (master) $ cat > Makefile
DOCKER_TAG ?= $(USER)—dev

itest:

docker build -t $(DOCKER_TAG) .
krall@dev4-devc:~/pg/paasta_demo 2master; $ git add Dockerfile Makefile
krall@dev4-devc:~/pg/paasta_demo (master) $ git commit -m "initial commit"
[master (root-commit) cedddb8] initial commit
2 files changed, 13 insertions(+)
create mode 100644 Dockerfile
create mode 100644 Makefile
k:rall@dev4—devc ~/) /paasta_demo (master) $ I

krall@dev4—devc:~/pg/paasta_demo (master) $ paasta check
X Failed to locate yelpsoa—config directory for paasta_demo.
Please follow the guide linked below to get boilerplate. http://y/paasta-deploy
X No deploy.yaml exists, so your service cannot be deployed.
Push a deploy.yaml and run “paasta generate-pipeline".
More info: http://y/yelpsoa-configs
X No 'security-check' entry was found in your deploy.yaml.
Please add a security-check entry xAFTERx the itest entry in deploy.yaml
so your docker image can be checked against known security wulnerabilities.
More info: http://servicedocs.yelpcorp.com/docs/paasta_tools/paasta_cli/security_check.html
X No 'performance—check' entry was found in your deploy.yaml.
Please add a performance—check entry *AFTERx the security-check entry in deploy.yaml
so your docker image can be checked for performance regressions.
More info: http://servicedocs.yelpcorp.com/docs/paasta_tools/paasta_cli/performance_check.html
X Jenkins build pipeline missing. Please run 'paasta generate-pipeline’
More info: http://y/paasta—-deploy
v/ Git repo found in the expected location.
v Found Dockerfile
v Your Dockerfile pulls from the standard Yelp images.
X Couldn't find 'EXPOSE 8888' in Dockerfile. The Dockerfile should
expose that per the doc linked below.
More info: http://y/paasta—contract
v/ A Makefile is present
v/ The Makefile contains a tab character
v/ The Makefile contains a docker tag
v/ The Makefile responds to “make itest®
X The Makefile does not have a “make test™ target. Jenkins needs
this and expects it to run unit tests. More info: http://y/paasta—contract
X No marathon.yaml exists, so your service cannot be deployed.
Push a marathon—-[superregion].yaml and run “paasta generate—pipeline”.
More info: http://y/yelpsoa-configs
v/ All entries in deploy.yaml correspond to a marathon entry
v/ All marathon instances have a corresponding deploy.yaml entry
X Your service is not using Sensu (monitoring.yaml).
Please setup a monitoring.yaml so we know where to send alerts.
More info: http://y/monitoring-yaml
X Your service is not setup on smartstack yet and will not be automatically load balanced.
More info: http://y/smartstack-cep323
krall@dev4-devc:~/pg/paasta_demo (master) $ [

krall@dev4-devc:~/pg$ paasta fsm -y yelpsoa-configs —s paasta_demo
Smartstack proxy_port? 20931
Team responsible for this service? paasta
One line description of this service? Anything is possible in Paasta
Link to your CEP or SCF? http://html5zombo.com

_ (0)_(o)= _

N i_FSM_:"_,
="\ -
)

With My Noodly Appendage I Have Written Configs For
paasta_demo

Customize Them If It Makes You Happy — http://y/paasta For Details
Remember To Add, Commit, And Push When You're Done:

cd yelpsoa—-configs/paasta_demo

Review And/Or Customize Files

git add .

git coomit —-m'Initial Commit For paasta_demo'

git push origin HEAD # Pushmaster Or Ops Deputy Privs Required

krall@dev4-devc: ~/pg$

krall@dev4-devc:~/pg/paasta_demo (master) $ paasta check
v/ yelpsoa-config directory for paasta_demo found in /nail/etc/services
v/ deploy.yaml exists for a Jenkins pipeline
v/ Found a security-check entry in your deploy pipeline
v/ Found a performance—check entry in your deploy pipeline
X Jenkins build pipeline m1ssmg Please run 'paasta generate-pipeline’
More info: http://y/paasta-dep
v/ Git repo found in the expected locatlon
v Found Dockerfile
v Your Dockerfile pulls from the standard Yelp images.
X Couldn't find 'EXPOSE 8888' in Dockerfile. The Dockerfile should
expose that per the doc linked below
More info: http: baasta-contract
v/ A Makefile is present
v The Makefile contains a tab character
v/ The Makefile contains a docker tag
v/ The Makefile responds to “make itest"
X The Makefile does not have a "make test™ target. Jenklns needs
this and expects it to run unit tests. More info: http://y/paasta-contract
v Found marathon.yaml file.
v/ All entries in deploy.yaml correspond to a marathon entry
v/ All marathon instances have a corresponding deploy.yaml entry
v/ monitoring.yaml found for Sensu monitoring
v/ Your service uses Sensu and team 'paasta’ will get alerts.
v/ Found smartstack.yaml file
v Instance 'main' of your service is using smartstack port 20931 and will be automatically load
balanced
krall@dev4-devc:~/pg/paasta_demo (master) $ |

krall@dev4-devc:~/pg/paasta_demo (master) $ paasta check

v/ yelpsoa-config directory for paasta_demo found in /nail/etc/services
v/ deploy.yaml exists for a Jenkins pipeline

v/ Found a security-check entry in your deploy pipeline

v Found a performance-check entry in your deploy pipeline

v Jenkins build pipeline found

v/ Git repo found in the expected location.

v Found Dockerfile

v Your Dockerfile pulls from the standard Yelp images.

v Found 'EXPOSE 8888' in Dockerfile

v/ A Makefile is present

v/ The Makefile contains a tab character

v/ The Makefile contains a docker tag

v/ The Makefile responds to “make itest"

v/ The Makefile responds to “make test®

v/ Found marathon.yaml file.

v/ All entries in deploy.yaml correspond to a marathon entry

v/ All marathon instances have a corresponding deploy.yaml entry
v monitoring.yaml found for Sensu monitoring

v Your service uses Sensu and team 'paasta’ will get alerts.

v/ Found smartstack.yaml file

v/ Instance 'main' of your service is using smartstack port 20931 and will be automatically load
balanced

kra11@dev4—devc ~/p /paasta_demo (master) $

krall@dev4-devc:~/pg/paasta_demo (master) $ paasta test-run
Building container from Dockerfile in /nail/home/krall/pg/paasta_demo
——> 7d0d345d863d
Step 1 : RUN apt-get -y —force-yes install python3 wget
——> Using cache
——> dacf277dba29
Step 2 : RUN wget -r html5zombo.com
——> Using cache
——> 293b5d7e13f2
Step 3 : CMD cd /html5zombo.com && python3 —-m http.server 8888
——> Using cache
——> 9bTb81d9601b
Step 4 : EXPOSE 8888
——> Running in 88ddefa2f98a
——> f038b08af3a3
Successfully built f@38b@8af3a3
Warning! You're running a container in non-interactive mode.
This is how Mesos runs containers. Some programs behave differently
with no tty attach.

Mesos would have healthchecked your service via
http://dev4-devc.dev.yelpcorp.com: 33548

0 I
= giigs [|=

eoe = = =gl
ﬁl.%.l%lz ==

® O ® /[zome0 “ x

(& dev4-devc.dev.yelpcorp.com:33548

krall@dev4-devc:~/pg/paasta_demo (master) $ git push origin HEAD
Counting objects: 6, done.

Delta compression using up to 24 threads.

Compressing objects: 100% (6/6), done.

Writing objects: 100% (6/6), 638 bytes | @ bytes/s, done.

Total 6 (delta 2), reused @ (delta Q)

To git@git.yelpcorp.com:services/paasta_demo

O'7oaef6. .8f90a52 HEAD -> master
krall@dev4—-devc:~/pg/paasta_demo (master) $

Wait for Jenkins...

krall@dev4-devc:~/pg/paasta_demo (master) $ paasta status -c norcal-devc
Pipeline: https://jenkins.yelpcorp.com/view/services-paasta_demo

cluster: norcal-devc
instance: canary
Git sha: ©6d1101bb

State: Running - Desired state: Started
Marathon: Healthy - up with (1/1) instances. Status: Deploying.
Mesos: Healthy - (1/1) tasks in the TASK_RUNNING state.

Smartstack: N/A - canary is announced in the main namespace.
instance: main
Git sha: 6d1101bb

State: Running - Desired state: Started
Marathon: Healthy - up with (3/3) instances. Status: Deploying.
Mesos: Healthy - (3/3) tasks in the TASK_RUNNING state.

Smartstack: (riticol - in haproxy with (0/4) total backends UP in this namespace.

kr-a‘lledgvll-devc:-/pg/paasta.deno (master) $ paasta status -c norcal-devc -v | ‘
e EEL (=) [= = g

krall@dev4-devc:~/pg/paasta_demo (master) $ paasta status -c norcal-devc
Pipeline: https://jenkins.yelpcorp.com/view/services-paasta_demo

cluster: norcal-devc

instance: canary
Git sha: 1432707d
State: Running - Desired state: Started
Marathon: Healthy - up with (1/1) instances. Status: Running.
Mesos: Healthy - (1/1) tasks in the TASK_RUNNING state.
Smartstack: N/A - canary is announced in the main namespace.

instance: main
Git sha: 1432707d
State: Running - Desired state: Started
Marathon: Healthy - up with (3/3) instances. Status: Running.
Mesos: Healthy - (3/3) tasks in the TASK_RUNNING state.
Smartstack: Healthy - in haproxy with (4/4) total backends UP in this namespace.

krall@dev4-devc:~/pg/paasta_demo (master) $ ||

see =] 22 eS|
O =1 R R =1 S == ==

€&) deva-devc:20931 & Q Search

Questions?

