
Microservices and the art of
taming the Dependency Hell

Monster

Michael Bryzek
Cofounder & ex-CTO Gilt

@mbryzek
mbryzek@alum.mit.edu

mailto:mbryzek@alum.mit.edu

Dependency Hell
• What is it and how does it happen?

• How do we mitigate?

• API design must be First Class

• Backward and Forward Compatibility

• Accurate Documentation

• Generated client libraries

http://en.wikipedia.org/wiki/Dependency_hell

Dependency hell is a colloquial term for the
frustration of some software users who have

installed software packages which have
dependencies on specific versions of other

software packages.

http://en.wikipedia.org/wiki/Dependency_hell

Example
service a depends on lib-foo version 1.7
service b depends on lib-foo version 1.6

Build pulls in version 1.7.

At runtime, turns out there was a breaking change in lib-
foo that the compiler could not verify.

Long chains of dependencies make this hard:
 service a depends on
 lib-foo depends on
 lib-bar depends on
 lib-baz

http://en.wikipedia.org/wiki/Dependency_hell

http://en.wikipedia.org/wiki/Dependency_hell

From Simple Architecture

To Fully Distributed

0 to 150+ People in Tech

How do you manage
dependencies?

And specifically those
dependencies in the libraries

we use.

Let’s Build an App

The Basics
• User registration and login

• Product catalog

• Inventory data

• Cart

user-service
• API to create a user; fetch user

details

• High throughput: 10k RPS+

• Millions of users

user-service client lib

createUser(form: UserForm): Future[User]
getUser(guid: UUID): Future[Option[User]]
deactivateUser(guid: UUID): Future[Unit]
updateUser(guid: UUID, form: UserUpdateForm):
Future[Unit]
authenticate(email: String, password: String):
Future[Boolean]
…

catalog-service
• API to fetch rich product details

• Moderate throughput: 5k RPS+

• Millions of products

catalog-service client lib

getProduct(id: Long): Option[Product]
getProductsInSale(saleId: Long, limit: Int,
offset: Int): List[Product]
getSkusForProduct(productId: Long): List[Sku]
…

inventory-service
• API to check stock of individual

products

• High throughput: 10k RPS+

• Guarantee never oversold

inventory-service client lib

numberAvailable(id: Long): Long
reserve(id: Long): Token
clearReservation(token: Token)
lock(reservationToken: Token, externalId: UUID)
…

cart-service
• API to add/remove to a

shopping cart

• Integrates with checkout

• Low throughput

cart-service client lib

addToCart(id: String, skuId: Long)
getCart(id: String): Cart
clearCart(id: String)
addToUserCart(userGuid: UUID, skuId: Long)
getUserCart(userGuid: UUID): Cart
clearUserCart(userGuid: UUID)
…

Service
Year of
Latest
Update

Client
Dependencies Futures? Example

Methods

user 2015 Scala 2.11, Ning 1.9 Yes createUser,
deactivate

catalog 2013 Scala 2.10, Ning 1.7 No createProduct

inventory 2009 Java 6, Netty HTTP
client. No reserve, lock

cart 2008 Java 6, Apache HTTP
Client. No addToCart

Then We Add Features
• Loyalty

• Recommendation

• Account Credits

• Nav bar with context, related sales

• Tracking

• and dozens more…

And with micro service architectures,
significant new features often lead to

new services and new libraries.

Mature Microservice Arch

What happens next?
• Builds get larger and slower

• Create new client libraries that are each just a little bit
different

• Produce custom APIs that reduce interoperability

• Increase amount of boilerplate code

• Reduce code quality; slow down development

• And Eventually you will see a production error

Caused by:
java.lang.NoSuchMethodError

Minimizing the Pain
• API design must be First Class

• Backward and Forward Compatibility

• Accurate Documentation

• Generated client libraries

Guiding Principle:
The Open Source Way

• How do applications integrate with each other?

• How do you use a library?

• How much and what kind of documentation?

• How do I get support / contribute / report bugs?

• Public or Private is a detail

Tooling Matters
• www.apidoc.me codifies these practices

• very simple to get use

• zero dependencies on existing software process nor runtime

• Open source and free SAAS: https://github.com/mbryzek/
apidoc

• First commit April 6, 2014.

• Over 100 services already built at Gilt w/ apidoc

http://www.apidoc.me
https://github.com/mbryzek/apidoc

API Design Must be First Class

• Protobufs, thrift, avro, swagger 2.0, and apidoc

• The design of your API and the data structures
themselves are the hardest things to change

• Design them up front - and integrate these artifacts
into your design process.

Example: AVRO idl

@namespace("mynamespace")
protocol User {
 record Employee {
 string email;
 }
}

Example: apidoc
{
 "name": “user-service",
 "models": {
 "user": {
 "fields": [
 { "name": "id", "type": "uuid" },
 { "name": "email", "type": "string" }
]
 }
 }
}

“Schema First Design”

Really the most important concept

Accurate Documentation
• What services exist? Think of how github helps us

discover what libraries and applications exist.

• API as first class allows us to use these artifacts
directly in our software - ensures accuracy

• Semantic Versioning (http://semver.org/)

http://semver.org/

Backward Compatibility
• Imagine storing all historical records

• General guidelines:

• New fields are either optional or have defaults

• Can’t rename; Introduce new models where
necessary and migration path

Forward Compatibility
• Imagine new messages arrive with new data

• Additional considerations:

• Careful of enums; consider what happens when
you add a value in the future

• Careful with processing data (e.g. throwing an
exception if an unknown field shows up)

Forward Compatible Enum
sealed trait OriginalType

object OriginalType {

 case object ApiJson extends OriginalType { override def toString = "api_json" }

 /**
 * UNDEFINED captures values that are sent either in error or
 * that were added by the server after this library was
 * generated. We want to make it easy and obvious for users of
 * this library to handle this case gracefully.
 *
 * We use all CAPS for the variable name to avoid collisions
 * with the camel cased values above.
 */
 case class UNDEFINED(override val toString: String) extends OriginalType

 ...
}

Knowing When Things Change

Generating Client Libraries
• Potentially controversial; I was skeptical at first, but

works

• Enables consistent naming

• Minimal external dependencies

• Challenge: Can you generate a client that developers
love?

apidoc Ruby Client
client = MyService::Client.new("http://localhost:8000")

organizations = client.organizations.get(:limit => 10, :offset => 0)
organizations.each do |org|
 puts "Org %s is named %s" % [org.id, org.name]
end

neworg = client.organizations.post(:name => "My org")
puts "Created new org named %s" % neworg.name

apidoc Scala Client
val client = new com.bryzek.apidoc.api.v0.Client("http://localhost")

val organizations = client.organizations.get(limit = 10, offset = 0)
organizations.foreach { org =>
 println(s"Org ${org.name} is named ${org.id}")
}

val neworg = client.organizations.post(name = "My org")
println(s"Created new org named ${neworg.name}")

Consistency Really Matters

Original Consistent Naming based on REST

createUser POST /users/
Users.post

createProduct POST /products/
Products.post

reserve POST /reservations/
Reservations.post

addToCart POST /carts/:id/products/:productId
Products.postByIdAndProductId(id, productId, …)

Summary: Mitigate
Dependency Hell

• API design must be First Class

• Backward and Forward Compatibility

• Accurate Documentation

• Generated client libraries

Thank You

www.apidoc.me/doc/start

Michael Bryzek
@mbryzek

mbryzek@alum.mit.edu

http://www.apidoc.me/doc/start
mailto:mbryzek@alum.mit.edu

