
Immutable
infrastructure

with Docker and
containers

1 / 58

Who am I?
Jérôme Petazzoni (@jpetazzo)

French software engineer living in California

Joined Docker (dotCloud) more than 4 years ago
(I was at Docker before it was cool!)

I have built and scaled the dotCloud PaaS

I learned a few things about running containers
(in production)

2 / 58

https://twitter.com/jpetazzo

Outline
What is immutable infrastructure?

What are its pros and cons?

How can it be implemented with containers?

Also: demos!

3 / 58

Immutable
infrastructure

(a.k.a. immutable servers,
phoenix servers, etc.)

4 / 58

Rule 1: never change what's on a server
Don't install new packages

Don't upgrade existing ones

Don't remove or downgrade them

(Even for security vulnerabilities!)

Don't edit configuration files

Don't update your app code

(Even for small or urgent fixes!)

5 / 58

Rule 2: if tempted to change something...
See Rule 1

(OK, we will see an exception later.)

6 / 58

How do we upgrade?
Create new server from scratch

Apply deployment process*
(scripts, configuration management...)

(Optional: test the new server)

Replace old server with new server

Keep old server around, just in case

* Configuration management helps, but is not mandatory here.

7 / 58

WHY?!?

8 / 58

Avoid drift

9 / 58

Avoid drift

10 / 58

Avoid drift
Drift = differences between servers
(when they are supposed to be identical)

Caused by:

provisioning servers at different times

any manual operation

Consequences:

seemingly random failures

same code, different behavior

gets worse with time

11 / 58

Coping with drift
Careful replication of manual operations doesn't scale
(and is error-prone)

Automation seems simple at first,
but has to deal with many edge cases

Configuration management helps,
but only deals with what you've defined

12 / 58

Automation fails
"Let's use parallel-ssh!" (Or your favorite tool)

What if some servers...

are unreachable

become unreachable during the process

are being provisioned at the same time

What if one of those services is (partially) down?

distro package repositories

code or artifact repositories

13 / 58

Config management fails

package { "openssl": ensure => "installed" }

14 / 58

Config management fails

package { "openssl": ensure => "installed" }

 A wild OpenSSL vulnerability appears!

15 / 58

Config management fails

package { "openssl": ensure => "installed" }

 A wild OpenSSL vulnerability appears!

package { "openssl": ensure => "1.0.1g" }

16 / 58

Config management fails

package { "openssl": ensure => "installed" }

 A wild OpenSSL vulnerability appears!

package { "openssl": ensure => "1.0.1g" }

 Something went wrong, abort, abort!

17 / 58

Config management fails

package { "openssl": ensure => "installed" }

 A wild OpenSSL vulnerability appears!

package { "openssl": ensure => "1.0.1g" }

 Something went wrong, abort, abort!

package { "openssl": ensure => "installed" }

18 / 58

Config management fails

package { "openssl": ensure => "installed" }

 A wild OpenSSL vulnerability appears!

package { "openssl": ensure => "1.0.1g" }

 Something went wrong, abort, abort!

package { "openssl": ensure => "installed" }

 We didn't roll back to whatever-we-had!

19 / 58

Config management fails

package { "openssl": ensure => "installed" }

 A wild OpenSSL vulnerability appears!

package { "openssl": ensure => "1.0.1g" }

 Something went wrong, abort, abort!

package { "openssl": ensure => "installed" }

 We didn't roll back to whatever-we-had!

package { "openssl": ensure => "1.0.1f" }

20 / 58

Config management fails

package { "openssl": ensure => "installed" }

 A wild OpenSSL vulnerability appears!

package { "openssl": ensure => "1.0.1g" }

 Something went wrong, abort, abort!

package { "openssl": ensure => "installed" }

 We didn't roll back to whatever-we-had!

package { "openssl": ensure => "1.0.1f" }

 This should do the trick. (Hopefully.)
21 / 58

More nightmares

package { "openssl": ensure => "1.0.1f" }

22 / 58

More nightmares

package { "openssl": ensure => "1.0.1f" }

 Package not found on the repos.

23 / 58

More nightmares

package { "openssl": ensure => "1.0.1f" }

 Package not found on the repos.

 "Well, actually" we want an older version.

24 / 58

More nightmares

package { "openssl": ensure => "1.0.1f" }

 Package not found on the repos.

 "Well, actually" we want an older version.

 Package even less likely to be found on the repos.

25 / 58

More nightmares

package { "openssl": ensure => "1.0.1f" }

 Package not found on the repos.

 "Well, actually" we want an older version.

 Package even less likely to be found on the repos.

 "Well, actually" we were using 0.9.8xxx.

When we requested 1.0.1g we upgraded the whole distro.

26 / 58

More nightmares

package { "openssl": ensure => "1.0.1f" }

 Package not found on the repos.

 "Well, actually" we want an older version.

 Package even less likely to be found on the repos.

 "Well, actually" we were using 0.9.8xxx.

When we requested 1.0.1g we upgraded the whole distro.

(╯°□°）╯︵ ┻━┻)

27 / 58

With immutable servers
We still have the old server

Just put it back into service
(while we figure out the OpenSSL upgrade!)

Also works for any kind of upgrade
that needs to be rolled back

Alright, we have easy rollbacks.

But how does that help with drift?

28 / 58

"Trash your servers and burn your code"
(Chad Fowler)

Reprovision your servers regularly
(from scratch)

Ensures that you're always using recent packages

Any manual deviation gets fixed automatically

29 / 58

Improvement: golden image
Create a server from scratch

Apply deployment process

Snapshot this server (create an image)

(Optional: create a test server and validate it)

Create multiple identical servers from the image

Avoids uncertainties in the deployment process:
unreachable packages repositories etc.

Allows to keep (for cheap) past versions around.

30 / 58

Downsides

(and how to cope)

31 / 58

Problem: small changes are cumbersome
E.g. one line of CSS.

Before: manual change, validate, replicate
(a few minutes)

After: manual change, validate, ...

create new golden image from scratch
(one hour)

provision new servers from image
(a few minutes)

switch old/new servers

decommission old servers after a while

32 / 58

Solution: automation
All those operations have to happen

But everything after the "validate" step
should be automated

The clock time will still be 1+ hour

The user time will be a few minutes
(just like before)

Note: intermediary golden images can help
(provision from checkpoint instead of from scratch)

33 / 58

Problem: debugging is harder
E.g. troubleshoot network issues.

Before:

install tcpdump

fiddle with iptables

accumulate logs and packet captures locally

After:

install tcpdu-oops, the server was re-imaged

fiddle with ipta-oops, ...

logs and traces have to be shipped out
34 / 58

Solution 1: drift and self-destruct
Tag a given machine to prevent its "re-imaging"

Schedule it for self-destruct after e.g. 1 week
(shutdown +10000)

That machine is allowed to drift
(you can install your tools on it,
leave logs and traces locally...)

If you need more time, reschedule the self-destruct

35 / 58

Solution 1: drift and self-destruct
Tag a given machine to prevent its "re-imaging"

Schedule it for self-destruct after e.g. 1 week
(shutdown +10000)

That machine is allowed to drift
(you can install your tools on it,
leave logs and traces locally...)

If you need more time, reschedule the self-destruct

If you find yourself setting up a cron job to reschedule the self-
destruct, you're doing it wrong!

36 / 58

Solution 2: bundle the tools
Install tcpdump and friends in the golden image

Enable traffic capture with feature switch

(Alternate solution: statistical sampling)

Automate shipping of logs and traces

It's more work in the beginning, but pays in the long run.

37 / 58

Problem: storing data
Databases and anything stateful!

Before: just store it locally

After: need to persist it somehow

38 / 58

Solution 1: not my problem
"Often you can pass the buck to a service which someone else
maintains, like Amazon's RDS database service."

(Kief Morris)

Easy!

But what if:

there is no such service

I can't use it for $REASONS?

39 / 58

Solution 2: state = files
All you need is a mechanism to store files externally.

NAS/SAN (on-prem)

EBS, EFS (AWS)

Ceph, Gluster... (anywhere)

But it's extra work, expensive, and/or slower.

40 / 58

Solution 3: ?

41 / 58

Solution 3: ?
SPOILER ALERT

42 / 58

Solution 3

43 / 58

Immutable
containers

44 / 58

Let's review our process
Create image:

from scratch
(can take an hour or more)

from checkpoint
(takes a few minutes, more complex)

Deploy it N times
(takes a few minutes)

How do we do that with containers?

45 / 58

Building container images
We get the best of both worlds:

from scratch
(clean rebuilds without side-effects)

incremental
(fast rebuilds when changes are minor)

Why and how?

container snapshots are cheap
(seconds versus minutes)

simple DSL to break down the build into steps
(each step = one command = one snapshot)

46 / 58

FROM debian:jessie
MAINTAINER Jessica Frazelle <jess@docker.com>

Install dependencies
RUN apt-get update && apt-get install -y \
 build-essential \
 … \
 --no-install-recommends

Install node
RUN curl -sL https://deb.nodesource.com/setup | bash -
RUN apt-get install -y nodejs

Clone atom
RUN git clone https://github.com/atom/atom /src
WORKDIR /src
RUN git fetch && git checkout \
 $(git describe --tags \
 ̀git rev-list --tags --max-count=1̀)
RUN script/build && script/grunt install

Autorun atom
CMD /usr/local/bin/atom --foreground

47 / 58

What happens during the first build?

FROM debian
RUN apt-get xxx
COPY . /src
RUN /src/build

Create a container from debian base image
Execute apt-get xxx in this container, take a snapshot
Create a container from this snapshot
Copy source files into /src, take a snapshot
Create a container from this snapshot
Execute /src/build in this container, take a snapshot

The final snapshot is our built image.

48 / 58

What happens during subsequent builds?
Before executing each step:
check if we already executed the same step before
(and have a snapshot of its result)

if we do, use the snapshot and continue

otherwise, execute the step normally
(and snapshot the result)

As a result, we zoom through the build process,
until we hit a step that has changed

The end result is the same as a full clean build,
but much faster

49 / 58

Demo

50 / 58

Running container images
On physical or virtual machines

Run multiple containers per machine

Upgrading is faster
(doesn't have to wait for IaaS VM to come up)

Can reuse local data (Docker concept: "volumes")

Solves the stateful service problem

51 / 58

Demo

52 / 58

Bonus
Containers can share:

directories (e.g.: logs)

network stack (e.g.: traffic analysis)

... and more!

Logging, backups, metrics collection, troubleshooting...
can be done from "sidekick" containers.

53 / 58

Demo

54 / 58

Other niceties
Containers filesystem can be made read-only

enforces immutability

exception for data volumes (with noexec)

easier security audit

Cheaper

consolidation

save a few ¢ or $ per server per deploy
(great if your IAAS bills by the hour)

55 / 58

Conclusions

56 / 58

Immutable containers
All the advantages of immutable servers
(avoid drift, reliable rollbacks...)

Build in seconds instead of minutes/hours

Faster, simpler deployment

Deal with stateful services

Bonus: cheaper, safer, cleaner

57 / 58

Thanks!
Questions?

@jpetazzo
@docker

58 / 58

https://twitter.com/docker
https://twitter.com/jpetazzo

