Immutable
infrastructure
with DocRer and
containers

1/58

Who am I?

e Jerome Petazzoni (@jpetazzo)
e French software engineer living in California

e Joined Docker (dotCloud) more than 4 years ago
(I was at Docker before it was cool!)

I have built and scaled the dotCloud Paa$S

I learned a few things about running containers
(in production)

2 /58

https://twitter.com/jpetazzo

Outline

e What is immutable infrastructure?
e What are its pros and cons?
e How can it be implemented with containers?

e Also: demos!

3/58

Immutable
infrastructure

(3.k.a. immutable servers,
phoenix servers, etc.)

4 /58

Rule 1: never change what's on a server

e Don't install new packages

e Don't upgrade existing ones

e Don't remove or downgrade them
e (Even for security vulnerabilities!)
e Don't edit configuration files

e Don't update your app code

e (Even for small or urgent fixes!)

5/58

Rule 2: if tempted to change something...

e See Rule 1

(OK, we will see an exception later.)

6/58

How do we upgrade?

e Create new server from scratch

e Apply deployment process™
(scripts, configuration management...)

(Optional: test the new server)

Replace old server with new server

Keep old server around, just in case

* Configuration management helps, but is not mandatory here.

7/ 58

WHY?!?

Avoid drift

9/58

Avoid drift

10/ 58

Avoid drift

e Drift = differences between servers
(when they are supposed to be identical)

e Caused by:
o provisioning servers at different times
o any manual operation
e Consequences:
o seemingly random failures
o same code, different behavior

o gets worse with time

11/58

Coping with drift

e Careful replication of manual operations doesn't scale
(and is error-prone)

e Automation seems simple at first,
but has to deal with many edge cases

e Configuration management helps,
but only deals with what you've defined

12 /58

Automation fails

"Let's use parallel-ssh!" (Or your favorite tool)
e What if some servers...
o are unreachable
o become unreachable during the process
o are being provisioned at the same time
e What if one of those services is (partially) down?
o distro package repositories

o code or artifact repositories

13 /58

Config management fails

package { "openssl": ensure => "installed" }

14/ 58

Config management fails

package { "openssl": ensure => "installed" }

% A wild OpenSSL vulnerability appears!

15/ 58

Config management fails

package { "openssl": ensure => "installed" }

% A wild OpenSSL vulnerability appears!

package { "openssl": ensure => "1.0.1g" }

16 /58

Config management fails

package { "openssl": ensure => "installed" }

% A wild OpenSSL vulnerability appears!
package { "openssl": ensure => "1.0.1g" }

A\ Something went wrong, abort, abort!

17 /58

Config management fails

package { "openssl": ensure => "installed" }
% A wild OpenSSL vulnerability appears!

package { "openssl": ensure => "1.0.1g" }
A\ Something went wrong, abort, abort!

package { "openssl": ensure => "installed" }

18 /58

Config management fails

package { "openssl": ensure => "installed" }

% A wild OpenSSL vulnerability appears!

package { "openssl": ensure => "1.0.1g" }

A\ Something went wrong, abort, abort!

package { "openssl": ensure => "installed" }

We didn't roll back to whatever-we-had!

19/ 58

Config management fails

package { "openssl": ensure => "installed" }

% A wild OpenSSL vulnerability appears!

package { "openssl": ensure => "1.0.1g" }

A\ Something went wrong, abort, abort!

package { "openssl": ensure => "installed" }

We didn't roll back to whatever-we-had!

package { "openssl": ensure => "1.0.1f" }

20 /58

Config management fails

package { "openssl": ensure => "installed" }
% A wild OpenSSL vulnerability appears!
package { "openssl": ensure => "1.0.1g" }
A\ Something went wrong, abort, abort!
package { "openssl": ensure => "installed" }
We didn't roll back to whatever-we-had!
package { "openssl": ensure => "1.0.1f" }

4» This should do the trick. (Hopefully.)
21/58

More nightmares

package { "openssl": ensure => "1.0.1f" }

22 [58

More nightmares

package { "openssl": ensure => "1.0.1f" }

= Package not found on the repos.

23 /58

More nightmares

package { "openssl": ensure => "1.0.1f" }

= Package not found on the repos.

© "Well, actually” we want an older version.

24 [58

More nightmares

package { "openssl": ensure => "1.0.1f" }

= Package not found on the repos.
© "Well, actually” we want an older version.

& Package even less likely to be found on the repos.

25/ 58

More nightmares

package { "openssl": ensure => "1.0.1f" }

= Package not found on the repos.
© "Well, actually” we want an older version.
& Package even less likely to be found on the repos.

& "Well, actually" we were using 0.9.8XxXx.

When we requested 1.0.1g we upgraded the whole distro.

26 /58

More nightmares

package { "openssl": ensure => "1.0.1f" }

= Package not found on the repos.

© "Well, actually” we want an older version.

© Package even less likely to be found on the repos.
& "Well, actually" we were using 0.9.8XxXx.

When we requested 1.0.1g we upgraded the whole distro.

ey d~1-D

27 /58

With immutable servers

e We still have the old server

e Just put it back into service
(while we figure out the OpenSSL upgrade!)

e Also works for any kind of upgrade
that needs to be rolled back

Alright, we have easy rollbacks.

But how does that help with drift?

28 /58

"Trash your servers and burn your code’

(Chad Fowler)

e Reprovision your servers regularly
(from scratch)

e Ensures that you're always using recent packages

e Any manual deviation gets fixed automatically

29/ 58

Improvement: golden image

Create a server from scratch

e Apply deployment process

Snapshot this server (create an image)

(Optional: create a test server and validate it)
e (Create multiple identical servers from the image

Avoids uncertainties in the deployment process:
unreachable packages repositories etc.

Allows to keep (for cheap) past versions around.

30/58

Downsides

(and how to cope)

31/58

Problem: small changes are cumbersome

E.g. one line of CSS.

e Before: manual change, validate, replicate
(a few minutes)

e After: manual change, validate, ...

o create new golden image from scratch
(one hour)

o provision new servers from image
(a few minutes)

o switch old/new servers

o decommission old servers after a while

32 /58

Solution: automation

All those operations have to happen

e But everything after the "validate" step
should be automated

e The clock time will still be 1+ hour

e The user time will be a few minutes
(just like before)

Note: intermediary golden images can help
(provision from checkpoint instead of from scratch)

33 /58

Problem: debugging is harder

E.g. troubleshoot network issues.
e Before:
o install tcpdump
o fiddle with iptables
o accumulate logs and packet captures locally
o After:
o install tcpdu-oops, the server was re-imaged
o fiddle with ipta-oops, ...

o logs and traces have to be shipped out
34 /58

Solution 1: drift and self-destruct

e Tag a given machine to prevent its "re-imaging"

e Schedule it for self-destruct after e.g. 1 week
(shutdown +10000)

e That machine is allowed to drift
(you can install your tools on it,
leave logs and traces locally...)

e If you need more time, reschedule the self-destruct

35/58

Solution 1: drift and self-destruct

e Tag a given machine to prevent its "re-imaging"

e Schedule it for self-destruct after e.g. 1 week
(shutdown +10000)

e That machine is allowed to drift
(you can install your tools on it,
leave logs and traces locally...)

e If you need more time, reschedule the self-destruct

If you find yourself setting up a cron job to reschedule the self-
destruct, you're doing it wrong!

36 /58

Solution 2: bundle the tools

Install tcpdump and friends in the golden image

Enable traffic capture with feature switch

(Alternate solution: statistical sampling)
e Automate shipping of logs and traces

It's more work in the beginning, but pays in the long run.

37/ 58

Problem: storing data

Databases and anything stateful!
e Before: just store it locally

e After: need to persist it somehow

38 /58

Solution 1: not my problem

"Often you can pass the buck to a service which someone else
maintains, like Amazon's RDS database service."

(Kief Morris)
e Easy!
e But what if:
o there is no such service

o I can't use it for SREASONS?

39/58

Solution 2: state = files

All you need is a mechanism to store files externally.
e NAS/SAN (on-prem)
e EBS, EFS (AWS)
e Ceph, Gluster... (anywhere)

But it's extra work, expensive, and/or slower.

40/ 58

Solution 3:?

41 /58

Solution 3:?

SPOILER ALERT

42 | 58

Solution 3

43 /58

Immutable
containers

44 [58

Let's review our process

e Create image:

o from scratch
(can take an hour or more)

o from checkpoint
(takes a few minutes, more complex)

e Deploy it N times
(takes a few minutes)

How do we do that with containers?

45 [58

Building container images

e We get the best of both worlds:

o from scratch
(clean rebuilds without side-effects)

o incremental
(fast rebuilds when changes are minor)

e Why and how?

o container snapshots are cheap
(seconds versus minutes)

o simple DSL to break down the build into steps
(each step = one command = one snapshot)

46 / 58

FROM debian:jessie
MAINTAINER Jessica Frazelle <jess@docker.com>

Install dependencies
RUN apt-get update && apt-get install -y \
build-essential \
\

--no-install-recommends

Install node
RUN curl -sL https://deb.nodesource.com/setup | bash -
RUN apt-get install -y nodejs

Clone atom
RUN git clone https://github.com/atom/atom /src
WORKDIR /src
RUN git fetch && git checkout \
$(git describe --tags \
"git rev-list --tags --max-count=1")
RUN script/build && script/grunt install

Autorun atom
CMD /usr/local/bin/atom --foreground

47 [58

What happens during the first build?

FROM debian

RUN apt-get xxx
COPY . [src

RUN /src/build

e Create a container from debian base image

e Execute apt-get xxx in this container, take a snapshot
e (Create a container from this snapshot

e Copy source files into /src, take a snapshot

e (Create a container from this snapshot

Execute /src/build in this container, take a snapshot

The final snapshot is our built image.

48 [58

What happens during subsequent builds?

e Before executing each step:
check if we already executed the same step before
(and have a snapshot of its result)

o if we do, use the snapshot and continue

o otherwise, execute the step normally
(and snapshot the result)

e As a result, we zoom through the build process,
until we hit a step that has changed

e The end resultis the same as a full clean build,
but much faster

49 | 58

Demo

root@dockerhost: “# []

Running container images

On physical or virtual machines

e Run multiple containers per machine

Upgrading is faster
(doesn't have to wait for IaaS VM to come up)

e Canreuse local data (Docker concept: "volumes")

e Solves the stateful service problem

51/58

Demo

root@dockerhost: “# []

Bonus

e Containers can share:
o directories (e.g.: logs)
o network stack (e.g.: traffic analysis)
o ...and more!

Logging, backups, metrics collection, troubleshooting...
can be done from "sidekick" containers.

53/58

Demo

root@dockerhost: “# []

Other niceties

e Containers filesystem can be made read-only
o enforces immutability
o exception for data volumes (with noexec)
o easier security audit

e Cheaper
o consolidation

o save a few ¢ or $ per server per deploy
(great if your IAAS bills by the hour)

55/58

Conclusions

56 /58

Immutable containers

All the advantages of immutable servers
(avoid drift, reliable rollbacks...)

Build in seconds instead of minutes/hours
e Faster, simpler deployment
e Deal with stateful services

e Bonus: cheaper, safer, cleaner

57/ 58

Thanks!
Questions?

@)petazzo
@docker

58 /58

https://twitter.com/docker
https://twitter.com/jpetazzo

