Akka Concurrency Works
by Duncan K. DeVore,

Viridity Energy, Inc.

About Viridity: Energy Software Company

e Industrials, data centers, universities, etc.
e Help customers manage

e Renewables & storage

e Controllable load

e Forecasting

e Energy assets

About Viridity: VPower Software Platform

Suite of applications

Distributed & cloud based

Micro service architecture

Reactive philosophy

e Event-driven, responsive, resilient, scalable

Transform energy profiles into financial returns

About Me: VP, Software Engineering

25 years

Enterprise applications

Distributed computing

Reactive applications

Open source - Akka Persistence Mongo
Scala, Akka, Testing, Agile

Book: Manning, Building Reactive Applications

Outline

How many with concurrency experience?
How many with Scala/Akka experience?
Concurrency

Java

Reactive

Scala

Akka

Concurrency: Definition

In computer science, concurrency is a property of systems in which
several computations are executing simultaneously, and potentially
interacting with each other.

— Google

Concurrency: The Early Days

Computers ran one program at a time

From start to end

Had access to all of the machines resources
Sequential computing model

This was very inefficient and expensive

Concurrency: The Process

More than one program could run at once (not concurrently)
|solated independent execution of programs

OS would allocate resources (memory, file handles, etc.)
Communication (sockets, shared memory, semaphores, etc.)
Process schedulers

Multi-tasking, time sharing

Concurrency: The Thread

e Multiple program control flow

e Coexist within the same process
e Path to hardware parallelism

e Simultaneous scheduling

e Run on multiple CPU's
 Non-sequential computing model

e Awesome, multiple things at once!

e But there are challenges...

Concurrency: Not Easy!

Non-determinism
Shared Mutable State
Amdahl's Law

Exponential growth of problem

Concurrency: Non-Determinism

Although threads seem to be a small step from sequential
computation, in fact, they represent a huge step. They discard the
most essential and appealing properties of sequential computation:
understandability, predictability, and determinism. Threads, as a
model of computation, are wildly non-deterministic, and the job of
the programmer becomes one of pruning that nondeterminism.

— The Problem with Threads, Edward A. Lee, Berkeley 2006

Concurrency: Non-
Determinism

e What is going on?
e Try using a debugger
e Ok, I'll use a print statement

e Ok, I'll use logging

Imagine a man walking down a path in a
forest and, every time he steps further, he
must pick which fork in the road he wishes

to take.

— Wikipedia

Concurrency: Shared State

Imperative programming, the most popular form of structured
programming, is centered around the notion of sequential
execution and mutable state.

Derived from.the Von'Neuman architecture

Works great in a sequential single threaded environment
Not fun in a multi-threaded environment

Not fun trying to parallelize

Locking, blocking, call-back hell

Concurrency: Amdahl's
Law

The speedup of a program using multiple
processors in parallel computing is limited
by the sequential fraction of the program.
For example, if 95% of the program can be
parallelized, the theoretical maximum
speedup using parallel computing would
be 20x as shown in the diagram, no
matter how many processors are used.

— Wikipedia

SPEEDUP

95% parallel

90% parallel

75% parallel

50% parallel

PROCESSORS

Concurrency: Exponential Growth

The days of increasing clock speed are over
Faster switches will not help

Multi-core systems are common place

e Four or more cores are now common

e 10 or more cores are coming soon!

Performance is based on concurrency and multiple cores

Concurrency: Exponential Growth

 Programmers must embrace concurrent programming
e Local = multi-core, multi-core = distributed
e Distributed systems are the future

e Resilience (not just fault tolerance)

e Scaling for load (both in and out)

e Responsiveness (users don't care)

Concurrency: Definition
(Real One)

b

Madness, mayhem, heisenbug, bohrbug,
mandelbug and general all around pain an
suffering.

— me

Concurrency: Solutions?

Solutions Exist
Some Hard

Some not so Hard
Java

Scala

Akka

Java

Imperative Style

Shared State (the elephant in the room)
Atomic Variables

Locking

Executors & Thread Pools

ExecutorService & Futures

Java: Imperative Style

Characteristic How its Handled

Focus How to perform tasks and track state changes
State Changes Important

Order of Execution Important

Flow Control Loops, conditionals and methods

Manipulation Units Instances of structures or classes

Java: Imperative Style

The better argument for functional programming is that, in modern
applications involving highly concurrent computing on multicore
machines, state is the problem. All imperative languages, including
object-oriented languages, involve multiple threads changing the
shared state of objects. This is where deadlocks, stack traces, and
low-level processor cache misses all take place. If there is no state,
there is no problem.

— JavaWorld, 2012

Java: Shared State

If multiple threads access the same mutable state variable without
appropriate synchronization, your program is broken. There are
three ways to fix it:

* Don't share the state variable across threads;

* Make the state variable immutable; or
* Use synchronization when accessing state

— Java Concurrency In Practice

Java: Atomic Variables

Implement low level machine instructions
Atomic and non-blocking
Scalable & performant

compare-and-swap operation (CAS)

AtomiclInteger, AtomicLong, AtomicBoolean, etc.

Java: Atomic Variables

Limited number of atomic variables

Shared state is often represented by a complex compositions
Often compound actions are required for state mutation
Will not work for compound actions

To preserve state consistency, update related state variables in a
single atomic operation.

— Java Concurrency In Practice

Java: Locking

Built in locking mechanism for enforcing atomicity

Locks automatically acquired by executing thread upon entry
Locks automatically released upon exit

Reentrant - per-thread rather than per-invocation basis

synchronized, Lock, ReadWritelLock, Condition

Java: Locking

Deadlocks
Livelocks

Lock starvation
Race conditions

The more complex the shared state composition and the more

compound actions required to mutate that state, the more likely a

concurrency bug.

Java: Locking

Requires great vigilence!

Must be used anywhere threads cross paths

Must reason about mutable state

Must reason about compound actions

Must reason about deadlocks, livelocks, race conditions, etc.

Act as mutexes (mutual exclusion locks) - they block - Yuck!

Java: Executors

e Simple interface for execution of logical units of work (tasks)
e Single method execute, replacement for thread creation
e execute is based on the executor implementation

e Some create a new thread and launch immediately

e Others may use an existing worker thread to run r

e Others place r in a queue and wait for a worker thread to
become available

Java: Thread Pools

Most executor implementations use thread pools
They consist of worker threads

They minimize overhead due to thread creation
Fixed thread pools

Cached thread pools

Java: ExecutorService

An extension of Executor that provides termination and a
Future for tracking asynchronous progress

Can be shutdown and will reject new tasks

Has submit method that extends Executor.execute that
returns a Future

The Future can be used to cancel execution or wait for
completion

Java: Futures

Represents the result of an asynchronous computation
cancel method for stopping execution

get methods for waiting and returning the result

Methods to determine if completion was normal or cancelled
Cannot be cancelled after completion

get methods are blocking

Reactive

Merriam-Webster defines reactive as “readily responsive to a
stimulus”, i.e. its components are “active” and always ready to
receive events. This definition captures the essence of reactive
applications, focusing on systems that: react to events, react to
load, react to failure, react to users

— Reactive Manifesto

Reactive
How Does this Relate to Concurrency?

Why do We Build Concurrent Applications?

Performance & Scalability!!

Reactive

Techniques to Achieve Performance & Scalability

Asynchronous
Non-blocking
Message Passing

Share Nothing

Reactive: Asynchronous

e Use async message/event passing

e Think workflow, how events flow

e This will give you
e A more loosely coupled system
e Easier to reason about and evolve
e Lower latency

e Higher throughput

Reactive: Non-Blocking

e ...unless you have absolutely no other
choice

e Blocking kills scalability
* Use non-blocking I/0

e Use concurrency paradigms that are
lock free

Reactive: Message Passing

The asynchronous passing of events

Concurrent apps equal multi-core without changes
Naturally asynchronous and non-blocking

Increase in parallelization opportunities

Tend to rely on push rather than pull or poll

Reactive: Share Nothing

A share nothing architecture (SN) is a distributed computing
architecture in which each node is independent and self-sufficient,
and there is no single point of contention across the system. More

specifically, none of the nodes share memory or disk storage.

— Wikipedia

This means no shared mutable state.

Reactive: Share Nothing
What Happens?

class SharedMutableState(stuff: Any)
class NonDeterministic(sms: SharedMutableState)

class MultiThreadedEnvironment {
def whatHappens(sms: SharedMtableState): NonDeterministic = new NonDeterministic(sms)

b

In a concurrent environment, let alone a distributed system,
mutable state is the essence of BAD MOJO.

Reactive: Share
Nothing

Reactive: Share Nothing

Instead Use Immutable State!

case class ImmutableState(stuff: Any)
case class Deterministic(is: ImmutableState)

class ImmutableStateActor extends Actor {
def receive = { # <=== workflow allows us to reason deterministically
case msg: ImmutableState => Deterministic(msqg)

Reactive: Share Nothing

If multiple threads access the same mutable state variable without
appropriate synchronization, your program is broken. There are
three ways to fix it:

* Don't share the state variable across threads;

* Make the state variable immutable; or
* Use synchronization whenever accessing the state variable.

— Java Concurrency In Practice

What is Scala?
Functional style
Future

Promise

Scala

Scala: What is Scala?

Have the best of both worlds. Construct
elegant class hierarchies for maximum
code reuse and extensibility, implement
their behavior using higher-order
functions. Or anything in-between.

— Typesafe

Acronym for “Scalable Language”.
Object-Oriented
Functional, Functions are objects

Seamless Java interop

Scala: Functional Style

Characteristic How its Handled

Focus What information is desired, what transform is required
State Changes Non-existent

Order of Execution Low importance

Flow Control Function calls, recursion

Manipulation Units Functions are first class objects

Scala: Future

A way to reason about many concurrent
operations

A placeholder for a result that is yet to
occur

Can be composed for sequential
reasoning

Combinators and callbacks for non-
blocking

May only be assigned once, effectively
immutable

Scala: Future

Example with Callback

import scala.util.{ Success, Failure }

val greeting: Future[String] = future {
session.getLastGreeting

J

Scala: Future
Example with Callback

import scala.util.{ Success, Failure }

val greeting: Future[String] = future {
session.getLastGreeting

b

greeting onComplete { # <==== callback when future completes
case Success(greet) => println('"Last greeting was " + greet)
case Failure(e) => println("Error: " + e.getMessage)

J

Scala: Future

Composition with Combinators

val pilzzaStore: Future[PizzaStore] = future {
pizzaService.getClosestStore(zipCode)

J

Scala: Future

Composition with Combinators

val pilzzaStore: Future[PizzaStore] = future {
pizzaService.getClosestStore(zipCode)

3

val pizza: Future[Option[Pizzal]] = pizzaStore map {
store => Some(pizzaService.buy(store, "pepporoni'))
} recover {
case NonFatal(e) => None

b

Scala: Future

Composition with Combinators

val pizzaStore: Future[PizzaStore] = future {
pizzaService.getClosestStore(zipCode)

by

val pizza: Future[Option[Pizza]] = pizzaStore map { # <==== produces a new future
store => Some(pizzaService.buy(store, "pepporoni'))

} recover { # <==== produces a new future, if error, applies partial function

case NonFatal(e) => None

b

Scala: Promise

Promises can create a future
Writable single-assigment container
Completes a future with success
Fails a futre with failure

It's the writing side of the Future

Scala: Promise

val pss = new PizzaStoreService
val hs = new HomeService

val p = promise[Pizzal]()

val £ = p.future

val orderFood = future {
val pizza = pss.orderPizza()
p success pizza
hs.setTable()

b

val eat = future {
hs.findMovie()
f onSuccess {
case pizza => hs.eat()

b
b

Scala: Promise

val pss = new PizzaStoreService
val hs = new HomeService

val p = promise[Pizzal]()

val £ = p.future

val orderFood = future {

val pizza = pss.orderPizza() # <==== they told me it would only be 30 minutes ;-(
P success pizza # <==== when the pizza arrives complete the future
hs.setTable() # <==== don't wait for the pizza, set the table in the meantime

b

val eat = future {
hs.findMovie()
f onSuccess {
case pizza => hs.eat()

b
b

Scala: Promise

val pss = new PizzaStoreService
val hs = new HomeService

val p = promise[Pizzal]()

val £ = p.future

val orderFood = future {

val pizza = pss.orderPizza() # <==== they told me it would only be 30 minutes ;-(
P success pizza # <==== when the pizza arrives complete the future
hs.setTable() # <==== don't wait for the pizza, set the table in the meantime

b

val eat = future {
hs.findMovie() # <==== still waiting, lets find a good movie!
f onSuccess {
case pizza => hs.eat()

b
b

Scala: Promise

val pss = new PizzaStoreService
val hs = new HomeService

val p = promise[Pizzal]()

val £ = p.future

val orderFood = future {

val pizza = pss.orderPizza() # <==== they told me it would only be 30 minutes ;-(
P success pizza # <==== when the pizza arrives complete the future
hs.setTable() # <==== don't wait for the pizza, set the table in the meantime
by
val eat = future {
hs.findMovie() # <==== still waiting, lets find a good movie!
f onSuccess {
case pizza => hs.eat() # <==== Yeah! Pizza is here, lets eat!
by

b

Akka

e What is Akka?
e Actor System
e Distributed Model

Akka: What is Akka?

Akka is a toolkit and runtime for building
highly concurrent, distributed, and fault
tolerant event-driven applications on the
JVM.

— Typesafe

Simple Concurrency & Distribution
Resilient by Design

High Performance

Elastic & Decentralized

Extensible

Akka: Actors

Lightweight concurrent entities - 2.5m / GB mem
Uses asynchronous event-driven receive loop
Much easier to reason about concurrent code
Focus is on workflow rather than concurrency

Supports both Scala & Java

Akka: Actors

case class Pizza(kind: String)

class PizzaActor extends Actor with ActorLogging {

def receive = {
case Pizza(kind) = Llog.info("You want a " + kind + " Pizzal")

3
b

val system = ActorSystem('"MySystem")
val PizzaEater = system.actorOf(Props[PizzaActor], name = "pizzaeater'")
PizzaEater | Pizza("Pepporoni")

Akka: Actors

Fault Tolerance

Supervisor hierarchies with "let-it-crash" semantics
Supervisor hierarchies can span multiple JVM's
Self-healing semantics

Never stop philosophy

Fault Tolerance

e Actor's supervise actors they create

e When failure occurs the supervisor can:
e Resume the failed actor
e Stop or Restart the failed actor
e Escalate the problem up the chain

e Supervisor strategy can be overridden

import akka.actor.OneForOneStrategy

Fault Tolerance

import akka.actor.SupervisorStrategy.

import scala.concurrent.duration.

override val supervisorStrategy

OneForOneStrategy(maxNrOfRetries
. ArithmeticException

Ccase
CasSe€
Case
Case

Nul lPointerException

5, withinTimeRange
=> Resume
=> Restart

IllegalArgumentException => Stop

Exception

=> Escalate

1 minute) {

Akka: Actors

Location Transparency

Distributed workflow environment
Purely with messages passing
Asynchronous in nature

Local model = distributed model

Purely driven by configuration

Akka: Actors

Location Transparency

Message sent to local actor
ActorRef localWorld = system.actorOf(
new Props(WorldActor.class), "world");

LocalWorld ! "Hello!™

Akka: Actors

Location Transparency

Message sent to remote actor
ActorRef remoteWorld = system.actorOf(
new Props(WorldActor.class), "world");

remoteWorld ! "Hello!"

Akka: Actors

Location Transparency

ActorRef LlocalWorld = system.actorOf(
new Props(WorldActor.class), "world");

localWorld ! "Hello!"
|

No Difference in Semantics

ActorRef remoteWorld = system.actorOf(
new Props(WorldActor.class), "world");

remoteWorld ! "Hello!"

Akka: Actors

Persistence

e Messages can be optionally persisted and replayed
e Actors can recover their state

e even after JVM crashes

e even after node migration

e Supports snapshots

Akka: Actors

Persistence

class ExampleProcessor extends PersistentActor {
var state = ExampleState() # <--- mutable state, but NOT shared = OK!

def updateState(event: Evt): Unit =
state = state.update(event)

Akka: Actors

Persistence

class ExampleProcessor extends PersistentActor {

val receiveRecover: Receive = { # <=== process persisted events on boostrap
case evt: Evt => updateState(evt)
case SnapshotOffer(, snapshot: ExampleState) => state = snapshot

b

Akka: Actors

Persistence

class ExampleProcessor extends PersistentActor {

val receiveCommand: Receive = { # <=== process commands, if valid persist events
case Cmd(data) =>
persist(Evt(s"{data}")) { event =>
updateState(event)
context.system.eventStream.publish(event)

3

Akka Concurrency Works
Thank You!

