
Reducers
Rich Hickey

Motivation

• Performance

• via reduced allocation (vs seqs)

• via parallelism (leverage fork/join)

• Computer clock speeds are stuck

• Matters

Inspiration
• Haskell Iteratees

• http://www.haskell.org/haskellwiki/
Enumerator_and_iteratee

• Guy Steele’s ICFP 2009 Talk

• Organizing Functional Code for Parallel
Execution or, foldl and foldr Considered
Slightly Harmful

• http://vimeo.com/6624203

http://www.apple.com/
http://www.apple.com/
http://www.apple.com/
http://www.apple.com/
http://vimeo.com/6624203
http://vimeo.com/6624203

Where We Are

• FP History

• Primacy of lists and recursion

• Clojure has seqs and laziness

• Inherently sequential

Where We are Going

• More cores

• Speed must come from parallelism

• New programming model required?

Model Evolution

• Loops

• Higher-order functions on lists

• HOFs on Collections

• Collection independence

• Order independence

map et al Do Too Much

• Recursion

• Order

• Laziness

• Consumes List

• Builds list

(defn map [f coll]
 (cons (f (first coll)) (map f (rest coll))))

reduce Lets Collection
Drive

• Ignorant of collection structure

• Can build anything

• Not lazy

• Still ordered, left fold with seed

(defn reduce
 ([f init coll]
 (clojure.core.protocols/coll-reduce coll f init)))

Reducing Function

• (f result input) -> result

• Applied to init + first value

• then result + second value etc

How To Make map et al
Collection Ignorant?

• Build on reduce

• Without depending on order

• because map/filter don’t, fundamentally

• What to build? - Nothing!

Reduction Transformers

• Instead of making new concrete collection

• Change what reduce means for collection

• By modifying the supplied reducing function

Transformers
(defn mapping [f]
 (fn [f1]
 (fn [result input]
 (f1 result (f input)))))

(defn filtering [pred]
 (fn [f1]
 (fn [result input]
 (if (pred input)
 (f1 result input)
 result))))

(defn mapcatting [f]
 (fn [f1]
 (fn [result input]
 (reduce f1 result (f input)))))

Transformers
(defn mapping [f]
 (fn [f1]
 (fn [result input]
 (f1 result (f input)))))

(defn filtering [pred]
 (fn [f1]
 (fn [result input]
 (if (pred input)
 (f1 result input)
 result))))

(defn mapcatting [f]
 (fn [f1]
 (fn [result input]
 (reduce f1 result (f input)))))

Reducers

• We want fn of collection -> collection

• Minimize definition of collection == reducible

(reduce ((mapping inc) +) 0 [1 2 3 4]) ;meh

(defn reducer
 ([coll xf]
 (reify
 CollReduce
 (coll-reduce [_ f1 init]
 (coll-reduce coll (xf f1) init)))))

(reduce + 0 (reducer [1 2 3 4] (mapping inc))

Same Model
 (defn rmap [f coll]
 (reducer coll (mapping f)))

 (defn rfilter [pred coll]
 (reducer coll (filtering pred)))

 (defn rmapcat [f coll]
 (reducer coll (mapcatting f)))

 (reduce + 0 (rmap inc [1 2 3 4]))
 ;=> 14
 (reduce + 0 (rfilter even? [1 2 3 4]))
 ;=> 6
 (reduce + 0 (rmapcat range [1 2 3 4 5]))
 ;=> 20

But...

• reduce still sequential

• Some perf gains due to less allocation

• Where’s the cake?

fold

• Takes the order out of foldl, foldr, reduce

• a (potentially) parallel reduction

• Uses a reduce+combine strategy

• fork/join under the hood

• http://docs.oracle.com/javase/tutorial/
essential/concurrency/forkjoin.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

fold

• Like reduce, asks collection to do the work

• via protocol

• Segment the collection

• Run multiple reduces in parallel

• Use combine fn to process reduce results

(defn fold
 ([combinef reducef coll]
 (coll-fold coll n combinef reducef)))

rfn rfn rfn rfn rfn rfn rfn rfn

cfn

cfn

cfncfncfn

cfn

cfn

result

Reducing Leaves

• Breaks free from ordered single-pass

• Multiple seeds - from where?

• (combinef) ;; no args

• must return ‘identity’

• a la (+) == 0

Folders
• If collection is foldable, so is reducer

• as long as transformer doesn’t care about order

• map/filter etc don’t, take does
(defn folder
 ([coll xf]
 (reify
 ;;extend CollReduce as before
 CollFold
 (coll-fold [_ n combinef reducef]
 (coll-fold coll n combinef (xf reducef))))))

(defn rmap [f coll]
 (folder coll (mapping f)))

Composition

(def transform (comp (r/map inc) (r/filter even?)))

(r/fold + (transform v))

reduce/combine vs.
map/reduce

• No collection-ification

• identity value vs fn

• granularity

Summary

• Build map, filter et al as reducers

• Now independent of collection and order

• So, if fold is parallel, so are the ops

• No parallel-collections

• No parallel-ops

• fold + collection + reducers - simple!

Demo & Questions

