
UNORTHODOX PATHS  
TO HIGH PERFORMANCE

@ALEXRAS

TRITONSORT (NSDI 2011)
THEMIS (SOCC 2012)

MapReduce Really Fast

Sort Really Fast

2011!!!!!

2010!!

2014!!!

THIS TALK:
HOW WE DID IT

LANGUAGE
FRAMEWORK

TOOLS
API

1. SOFTWARE-HARDWARE CO-DESIGN

2. BUILDING FOR EXPERIMENTATION

3. CAREFULLY MANAGING MEMORY

MOTIVATION

[SORT] IS AN EXCELLENT TEST
OF THE INPUT-OUTPUT
ARCHITECTURE OF A COMPUTER
AND ITS OPERATING SYSTEM.

"A measure of transaction processing power"  
Datamation 1985

THE SORT BENCHMARK
‣ SORTING K/V PAIRS (RECORDS)
‣ MANY CATEGORIES, VARIANTS
‣ TODAY: GRAYSORT (100TB)

2009: YAHOO! SORTS 100TB  
IN 173 MINUTES 
ON 3452 HADOOP NODES

2.79 MBPS PER NODE

9.6 GB PER SECOND
578 GB PER MINUTE

3452 NODES

THE GAP IN THEORETICAL PER
NODE PERFORMANCE AND
WHAT IS ACTUALLY ACHIEVED
HAS BECOME  
GLARINGLY LARGE.

Anderson and Tucek 
“Efficiency Matters!” SIGOPS OSR 2010

HOW CAN  
WE DO 

BETTER?

HARDWARE & SOFTWARE  
CO-DESIGNED  

FOR WORKLOAD

UNDERSTANDING THE PROBLEM

HOW TO MAXIMIZE  
PER-NODE SPEED?

CPU
RAM
NETWORK
DISK ~15 disks/NIC

10Gbps

‣8 CORES
‣16 DISKS

‣24 GB RAM
‣10 GBPS NIC

WHAT ARE THE 
 EXPENSIVE  

OPERATIONS?

SEEKING

ROTATION

WRITING"
☠ SEEKING

KEEP OFF THE DISK
TWO READS +
TWO WRITES
PER RECORD

SEEK INFREQUENTLY

BIG READS  
BIG WRITES

WHICH DISTRIBUTED  
SORTING ALGORITHM?

MERGESORT
1 2 8 7 12 103 5 4 6 9 11

31 2 4 5 6 7 98 12 10 11

1 2 3 4 5 6 7 8 9 1210 11

THE TROUBLE WITH MERGESORT
AT SCALE, MANY SORTED CHUNKS

FETCHING RANDOMLY CAUSES SEEKS

DISTRIBUTION SORT

3 1 24 56

1 2 8 7 12 103 5 4 6 9 11

8 7 9 12 10 11

31 2 4 65 7 8 9 1210 11

DISTRIBUTION SORT

‣ BIG WRITES IN FIRST PASS
‣ SEQUENTIAL I/O IN SECOND PASS

NOW, TO BUILDING!

IT WON'T JUST
MAGICALLY  

BE FAST

EXPERIMENTATION!

FLEXIBLE
MODULAR
GRAPHS

STAGE

READ HASH SEND

RECEIVE PARTITION WRITE

NETWORK

READ SORT WRITE

SYNTHETIC HASH SEND

RECEIVE PARTITION SINK

NETWORK

REALLY FAST DISKS?

READ HASH SINK

SYNTHETIC PARTITION WRITE

NETWORK

REALLY FAST NETWORK?

DIFFERENT SORTS?
READ RADIX SORT WRITE

READ QUICKSORT WRITE

READ TIMSORT WRITE

MEASUREMENT

HOW LARGE ARE WRITES?

WHERE IS THE BOTTLENECK?

ARE STAGES BLOCKED? IDLE?

TONS AND TONS  
OF LOGS

AGGREGATES

TIME-SERIES

RUNTIME INFO

ORGANIZING LOGS
/2016/06/14/frob_widgets_1.tar.bz2

ORGANIZING LOGS
/2016/06/14/frob_widgets_1.tar.bz2
 /cluster_nodes.txt
 /node.conf

ORGANIZING LOGS
/2016/06/14/frob_widgets_1.tar.bz2
 /cluster_nodes.txt
 /node.conf
 /notes.md

SMARTLY CONTROLLING MEMORY

BUFFER POOLS ARE  
FAST AND SIMPLE  
AND INFLEXIBLE

MALLOC IS 
SIMPLE AND FLEXIBLE  

AND DANGEROUS

By default, Linux follows an
optimistic memory allocation
strategy. This means that when
malloc() returns non-NULL there is
no guarantee that the memory really
is available.

In case it turns out that the
system is out of memory, one or
more processes will be killed by
the OOM killer.

ARE WE SOLVING
THE RIGHT PROBLEM?

WHAT IF MALLOC WAITED?
WAITING PROVIDES BACKPRESSURE

CALLERS CAN BE SCHEDULED
INTERFACE STAYS SIMPLE

DECISIONS CAN BE GLOBAL

POOLS
QUOTAS

CONSTRAINTS

WRAPPING UP

300 MBPS PER NODE

15.6 GB PER SECOND
938 GB PER MINUTE

52 NODES

632 MBPS PER NODE

112.6 GB PER SECOND
6757 GB PER MINUTE

178 NODES

LESSONS
LEARNED:

BOTTLENECKS
SHAPE YOUR

ARCHITECTURE

STRUCTURE SOFTWARE
FOR EXPERIMENTATION

AND MEASUREMENT

SAVE YOUR LOGS
SAVE YOUR CONFIG
SAVE YOUR NOTES

SOMETIMES YOU NEED
MORE CONTROL THAN
THE OS WILL GIVE YOU

GOING FAST  
IS HARD

THANKS

