
Uber’s Journey into
Microservices
Emily Reinhold, Software Engineer, Uber

JUNE 15, 2016

Our Monolith

Background

‣“API”

‣Started January 2011

Fun Facts

Lines of Code over Time

0K

75K

150K

225K

300K

2011 2012 2013 2014 2015 2016

Unique Authors over Time

0

150

300

450

600

2011 2012 2013 2014 2015 2016

Start of
migration.
Yay!

API Trends

‣“API”

‣Started January 2011

‣Access to core data models

Fun Facts

Core Data Models
Users Trips Payments

Products Cities Documents

Exchange
Rates Vehicles Promos

The Uber Monolith

‣Postgresql

‣Python 2.7

‣HTTP/JSON

‣uWSGI

Technical Details

Request Flow
Matching
Service

haproxy API box nginx uWSGI
process

Postgres

Downstream
Services

Third Parties

API

‣Minimal overhead for cross-
domain features

Benefits

“Cross Domain”
Users Trips Payments

Products Cities Documents

Exchange
Rates Vehicles Promos

The Uber Monolith

‣Minimal overhead for cross-
domain features

‣Reuse code across domains

‣Broad, extensible interface

Benefits

‣Honks

‣Halloween 2014

‣Postgresql Master Failure

Historic Outages

Image courtesy of Anita Hart. Licensed under CC-BY-SA 2.0.

https://flic.kr/p/8PG15b

Postgresql Master Failure

‣Honks

‣Halloween 2014

‣Postgresql Master Failure

‣Kafka Outage

Historic Outages

Kafka Outage

‣Deploy burden

‣Single Postgres Master

Technical Bottlenecks

Image courtesy of Paul Schadler. Licensed under CC-BY 2.0.

https://flic.kr/p/aDoGkP

https://flic.kr/p/aDoGkP

‣Rapid hiring

‣Slow test suite

‣Toe stepping, merge conflicts

Developability

‣Growth of business

‣Growth of features

‣Growth of organization

Scalability 3 Ways

In Microservices

Our Future

‣Horizontally scalable

Benefits

Scalability

Trips Users Promos

‣Horizontally scalable

‣Improved onboarding

‣Clear ownership

Benefits

Ownership

No hiding!

You’re on call!

‣Horizontally scalable

‣Improved onboarding

‣Clear ownership

‣Failure isolation

Benefits

Granular Failures
Old Way

API

client
show

Payments

Promos

User tags

Edge Service

New Way

Edge Service

Payments Promos Users

?

Lessons Learned

‣Drastically changing tech
stack

Limit Scope

Tech Stack
That’s
me!

eng.uber.com/building-tincup/

Data Migration

1. Develop new
schema

2. Implement
converter

3. Dual write 4. Backfill

6. Move read
queries

5. Validation
?

7. Remove old
writes

‣Drastically changing tech
stack

‣Infrastructure not ready
‣ Understaffed

‣ Lacked tooling

Limit Scope

Things Happen

Image courtesy of Kim Scarborough. Licensed under CC-BY-SA 2.0.

https://flic.kr/p/23HUAK

https://flic.kr/p/23HUAK

‣Drastically changing tech
stack

‣Infrastructure not ready
‣ Understaffed

‣ Lacked tooling

‣Understanding timelines

Limit Scope

‣Monolith’s consumers
directly impacted

Aligning with Consumers

Consumers

API

Pricing

Matching

Signup

Exchange rates

Cities

Users

Trips

Trips

Exchange
Rates

Cities

Users

‣Monolith’s consumers directly impacted

‣Importance of migrating not well
communicated

‣Constant interruption

Aligning with Consumers

‣For service developers and
migrating consumers

‣Tool to split up request

Build Tools Initially

Request Splitter

API
Cities

Currencies

Users

Trips

Old Way
requesting trip
info, with
relationships
on user,
currency, city

New Way

API
Cities

Currencies

Users

Trips

Tool

requesting trip
info, with
relationships
on user,
currency, city

request user

request city

request currency

request trip

‣For service developers and migrating
consumers

‣Tool to split up request

‣Tool to validate new response

‣Tool to gain visibility into consumers

Build Tools Initially

‣Most difficult aspect of migration

‣Silently call new system

Consumer Migration Tips

Silent Swap

API

Matching

Signup

Exchange ratesCities

Users Trips

Users

‣Most difficult aspect of migration

‣Silently call new system

‣Most successful migration kept
interface the same

Consumer Migration Tips

‣Tendency to avoid changes

‣Tackling core (User) directly
required refactor

 Love your Monolith

‣Likely to impact other teams

‣Teams shift focus

Migration Blockers

Migration Successes

‣Shared accomplishment

‣Relationships formed

‣New understanding

Collaboration

‣New tech stack: more efficient

‣No more uWSGI!

Hardware efficiency

uWSGI Utilization

CPU Usage

‣New tech stack: more efficient

‣No more uWSGI!

‣Calls asynchronous

Hardware efficiency

‣How our systems work

‣Design for stability

‣Evenly spread ownership

Deeper Understanding

First & Last Name

Email: emilyr@uber.com
Engineering Blog: eng.uber.com
Twitter: @UberEng

Thank you

