
Spencer Chan – Quora

Architecting Cross-Platform 
Mobile Frameworks



Motivation

● Two extremes

○ Fully native

○ Fully HTML+JS

● How can we get the best of both worlds?



Motivation

● Two extremes:

○ Fully native

○ Fully HTML+JS

● How can we get the best of both worlds?

● For the last 3 years, Quora has used a custom hybrid 

framework

○ We're very happy with it



Agenda

1. How Quora's app works

2. Design Decisions

3. Learnings from the past 3 years



Takeaways

● What can you expect if you follow the same path we did?

● Is this approach worth exploring for your apps?

● What should you look for in a publicly available 

framework?

○ Are you better off building your own?



How it Works



This is a question page



This is a question page

Webviews
outlined
in red



● The webview loads a url

● The page is rendered by a tree of 

component objects

● This component is used across all platforms

Meanwhile on the Server



After page load



After scrolling to the end of the answer



Pressing the button

HTML + 
CSS



Pressing the button

HTML + 
CSS +
JS



Pressing the button

No native code involved at all!

HTML + 
CSS +
JS



Now for a different example...



Here's a user profile page



Tapping here is going to show a menu ...



Native menu



Native menu



Message Passing



Message Passing



● Implemented differently for each platform

● Asynchronous message passing is more future proof

● Minimal, but can build on top of this

Message Passing



Abstraction is your friend

iOS
Obj-C/Swift

Android
Java

Application 
JavaScript



Abstraction is your friend

iOS
Obj-C/Swift

Android
Java

Web 
Framework 
JavaScript

Application 
JavaScript



● Abstracting away platform specific code simplifies the remaining 

application code 

● Also useful for cross-browser compatibility

○ This is one of the main benefits of things like jQuery

Abstraction is your friend



Design Decisions



Design Decisions

1. HTML Content

2. Native Navigation

3. No Page Types



HTML Content

Webviews
outlined
in red



HTML Content

No native code involved at all!

HTML + 
CSS +
JS



HTML Content

● Alternative: native views powered by shared application code

● HTML views increase potential code sharing with websites, if you 

have one

○ Client side vs. Server side rendering

● HTML is great for text-heavy products like Quora



Design Decisions

1. HTML Content

2. Native Navigation

3. No Page Types



Native Navigation

● Each navigation creates a new webview and adds it to the 

native navigation stack.

● Pros

○ Native gestures

○ Native animations

● Cons

○ Makes prefetching harder

○ More native code, less code sharing



Native Navigation



Native Navigation



Native Navigation



Design Decisions

1. HTML Content

2. Native Navigation

3. No Page Types



Native UI Examples: How do we implement this?



Solution 1: Page Types

● "This is the notifications page" 

○ Native code knows it should have certain buttons and styling



Solution 2: No Page Types

● "Native UI should have these buttons and this styling"

○ Native code doesn't need to know about notifications

● This makes it easier to maintain a strong abstraction barrier

● Useful if you expect to add or modify page types often



Avoid Message Thrash

● Backwards compatibility is painful

● Easier to do without page types, but still a concern

● Avoid UI thrash!



Design Decisions

1. HTML Content

2. Native Navigation

3. No Page Types



Learnings



1. Be prepared to deal with webview quirks

2. Demystify loading slowness

3. Code sharing goes deeper than views

4. JavaScript lets everyone contribute

Learnings



● Problem:

○ Spike in crash reports saying app ran out of memory

● Solution:

○ It was a new image loader we were trying out

○ Don't load images in JS on that webview implementation

Webview Issues



Webview Issues

Our webviews have an animated 

loading screen (the 3 dots in the 

middle are animated)



● Problem:

○ We want to fade out the loading screen as soon as any content is 

visible in the webview

○ But we can't tell from native code when webview has started 

displaying content

● Solution:

○ Poll the webview pixel to see when they start changing

Webview Issues



1. Be prepared to deal with webview quirks

2. Demystify loading slowness

3. Code sharing goes deeper than views

4. JavaScript lets everyone contribute

Learnings



● Bandwidth

○ HTML is bigger than JSON

● Multiple roundtrips

○ Blocking on CSS/JS

○ Web performance could be the subject of a whole separate talk

Real issues caused by webviews



● Latency

○ Loading images from a server on the other side of the 

world will be slower than loading them from a CDN

● Slow application code

○ Example: not paginating data

○ Again, this could be a whole separate talk

Issues unrelated to webviews



Find the real root causes of your performance problems

Be scientific and rigorous



● Our app will have performance in the same ballpark as our 

mobile website

● We have a mobile website and care about its performance

● All of our speed efforts are going towards the same thing

At least there's only one thing to optimize



1. Be prepared to deal with webview quirks

2. Demystify loading slowness

3. Code sharing goes deeper than views

4. JavaScript lets everyone contribute

Learnings



● At Quora, the same boxes handle all platforms

○ No API tier

Shared infrastructure



Shared deployment tools

We share the same continuous deployment system we use on web



● If there are 100 buttons and 3 platforms, do you need 300 tests?

● Or just 102

Shared UI integration tests



1. Be prepared to deal with webview quirks

2. Demystify loading slowness

3. Code sharing goes deeper than views

4. JavaScript lets everyone contribute

Learnings



Javascript lets everyone contribute



● Easy ramp-up

● Designers code

● Few projects get blocked on native development

Javascript lets everyone contribute



1. Be prepared to deal with webview quirks

2. Demystify loading slowness

3. Code sharing goes deeper than views

4. JavaScript lets everyone contribute

Learnings



Conclusion

● There are pros and cons to any architecture

● This one has worked very well for us over the last 3 years

● If you haven't tried hybrid app development, maybe it's worth 

considering or exploring

○ either by building your own framework, or using a publically 

available one



Questions?


