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1: Poncho

* A weather cat that sends you
personalized weather
messages.

* Algorithms + Humans

The morning tastes better t han
it looks!

* Not every feature in weather
data has equal importance — n L
what's actionable? ()



2: Digg Trending

* Ranked each day:

— 10 million RSS feeds, 200 million tweets, 7.5
million new articles ranked each day
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#links > k

3: Digg Deeper
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In particular, logistic functions are used in Neural
Networks as the first step - the activation, to mimic to the
ejection of electrical pulse of human neurons if you
would like to think of NN biologically.
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B5: Scale Model
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VALUE of
Algorithms
vs. Data

Varied Distribution Prediction Error

Historical Data

Similarity between training & test
distributions (less varied dist)

Impact of a more
complex algorithm

Historical Data Value




Moving fast and slow

e Fast:

— Experience, Similar Problems, Pre-existing
pipelines

* Slow:
— New type of data, Bootstrap, Scaling

* Main challenge:

— how to jump between states, when to change
gears.
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Effects of moving Fast

e Technical debt?

— Refactoring code
—Improving unit tests
—delete dead code
—reducing dependencies
—tightening APlIs
—improving documentation



Effects of moving Slow

* Growth debt?
— Waiting team mates

— Uncertain quality assurance
— Piling up further requests
— Hypothesis might not be feedback driven

— Overthinking the solution



Maintenance

* Code Level
— How researchable, reusable, deployable

e System Level

— Eroding abstraction boundaries

e Data Level

— Data influences ML behavior.



Data vs. Code Organization

* Snapshotting .. Detects bias

* |Interface at the method, be procedural

— Easy to execute portions of the code.

e Separate hyper-arguments from parameters

— Parameter: How your model is specified
— Hyper-Arguments: How your algorithm should run



Unstable APIs

Who owns the data stream?
Who owns the model ?

Ownership by
— entire solution
— Expertise? DB ? Pipelines? Algorithms? Stats

Debug?

— Frozen versioning instead of continual



Feature Erosion

* User behavior with new model could make
features of current model unimportant

e How can we detect this?

* How can we prevent this?



Predictor Variables

 Myth: If you add a few more variables, the
predictor will be better.

* |f the predictors have realistic priors, their
coefficients could be appropriately pulled
down (in expectation) and over fitting
shouldn’t be such a problem



Visualizations

Any ML algorithm must be seen to believe it.




Visualizations

Temperature: 37
Humidity:-0.59
WindSpeed: 7.65
Prec. Prob: 0.01

{iey



Research vs. Production

* Collaboration looks very different based on
the end goals

Do you need to master git or just get by

* How quickly can you move something from
iIPython to production grade?



Even the best tools..

e Lets talk about iPython notebooks:
— Version Control

— Fragmented Code is deadly for production grade.
— Security issue : all those open ports

— Code Reviews and Pull Requests.



Heuristic Escape

“Heurzistic is an algorithm in a clown suit. It’s less
predictable, 1t’s more fun, and 1t comes without a 30-
day, money-back guarantee.”

— Steve McConnell, Code Complete



Domain of Impact

* Most engineers and computers scientists will
conceptualize domains as primarily a rational,
evidence-based, problem-solving enterprise
focused on well-defined conditions.

e But the real world is ..... more complex!

* e.g.,: Trending News Algorithms



Invention vs. Innovation

What is ML good at? Both ?
Not outside the box, instead connect them.

innovation = improve significantly by adjusting
ML method

invention = totally new ML method.



Fitting ML into the betaworks model

Product C

Company Company

B A

Research




Code & Data Residence

* ML module transfer

— Code transfer
e Core module
* Model updating component
* Analysis component

— Data transfer
* Infrastructure rebuild?
* Performance
* maintenance



Powered by deepNews
Research ready pipelines
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Powered by deepNews + Scale Model
Second order Analysis

Reach in Conservatives (X), Progressives (Y)
and Media (bubble size) communities
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ZERO

automated solutions

Affective
Compuling

/ Vtopwy %

/ TopicModeling | DBpediav | | Freeboase

/ APLy Apps for transactional tasks

MANY automated solutions



HIGH VALUE

of historical data

/ LDA LSA  DBpediov Freebase

/ APLy Apps for transactional tasks

LOW VALUE of historical data




Data Types by Company

Digg has topic modeling/ news data
Scale model has social graph data

Poncho has weather data/editorialized
personality

Giphy has gifs (emotion++)
Instapaper has reading data
Dexter has hooks to APIs



Top-1 accuracy (higher is better)
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Transfer Learning

5: Transfer + fine-tuning improves generalization

3: Fine-tuning recovers co-adapted interactions

2: Performance drops
due to fragile
co-adaptation

4: Performance

drops due to
representation
specificity

0 1 2 3 4 5 6 7
Layer n at which network is chopped and retrained




To Sum up

e Constraints to ML solutions occur at three
levels:

— Algorithmic
— Data
— Humans

 These parameters lead to several oscillating
cycles of fast and slow impact of ML

 Whats good for you?



ML 2016

Understood by few, hyped by some, revered by
most.

Can be the difference between a company scaling
vs. close shop.

Almost every company can have at least 1
product feature powered by ML.

Be careful about bias in data.
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