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About Netflix

● 81.5M members
● 2000+ employees (1400 tech)
● 190+ countries
● > 100M hours watch per day
● > ⅓ NA internet download traffic
● 500+ Microservices
● Many 10’s of thousands VM’s
● 3 regions across the world
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Agenda

● Why containers at Netflix?

● What did we build and what did we learn?

● What are our current and future workloads?
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Why a 2nd edition of virtualization?

● Given our resilient cloud native, CI/CD devops enabled, 
elastically scalable virtual machine based architecture, 
did we really need containers? 4



Motivating factors for containers

● Simpler management of compute resources

● Simpler deployment packaging artifacts for compute jobs

● Need for a consistent local developer environment
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Simpler compute, Management & Packaging

Batch/stream processing jobs

● Here are the files to run my process
● I need m cores, n disk, and o memory
● Please just run it for me!
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Service style jobs (VM’s)

● Use tested/secure base AMI
● Bake an AMI
● Define launch config
● Choose t-shirt sized instance
● Canary & red/black ASG’s



Consistent developer experience

● Many years focused on
○ Build, bake / cloud deploy / operational experience
○ Not as much time focused on developer experience

● New Netflix local developer experience based on Docker

● Has had a benefit in both directions
○ Cloud like local development environment
○ Easier operational debugging of cloud workloads
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What about resource optimization?

● Not absolutely required and easier to get wins at larger 
scale across larger virtual machine fleet

● However, potential benefits to
○ Elastic resource pool for scaling batch & adhoc jobs
○ Reliable smaller instance sizes for NodeJS
○ Cross Netflix resource optimizations

■ Trough usage, instance type migration
8



Agenda

● Why containers at Netflix?

● What did we build and what did we learn?

● What are our current and future workloads?
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VMVM

Lesson:  Support containers by leveraging 
existing Netflix IaaS focused cloud platform
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VMVM
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Lesson: Buy vs. Build, Why build our own?
● Looking across other container management solutions

○ Mesos, Kubernetes, and Swarm
● Proven solutions are focused on the datacenter
● Newer solutions are

○ Working to abstract datacenter and cloud
○ Delivering more than cluster manager

■ PaaS, Service discovery, IPC
■ Continuous deployment
■ Metrics

○ Not yet at our level of scale
● Not appropriate for Netflix 12



“Project Titus” (Firehose peek)
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Is that all?
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Container Execution
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Lesson:  What you lose with Docker on EC2  
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Lesson:  Making Containers Act Like VM’s
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● Built:  EC2 Metadata Proxy
○ Provide overridden scheduled IAM role, instance id
○ Proxy other values

● Provided:  Provide Environmental Context
○ Titus specific job and task info
○ ASG app, stack, sequence, other EC2 standard

● Why?  Now:
○ Service discovery registration works
○ Amazon service SDK based applications work



Lesson: Networking will continue to evolve 
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● Started with batch
○ Started with “bridge” with port mapping
○ Added “host” with port resource mapping (for performance?)
○ Continue to use “bridge” without port mapping

● Service style apps added
○ Added “nfvpc” VPC IP/container with libnetwork plugin
○ Removed Host (no value over VPC IP/container)
○ Changed “nfvpc” VPC IP/container

■ Pod based with customer executor (no plugin)
○ Added security groups to “nfvpc”



Plumbing VPC Networking into Docker
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Lesson:  Secure Multi-tenancy is Hard
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Common to VM’s and tiered security needed
● Protect the reduced host IAM role, Allow containers to have specific IAM roles
● Needed to support same security groups in container networking as VM’s

User namespacing
● Docker 1.10 - Introduced User Namespaces

● Didn’t work /w shared networking NS
● Docker 1.11 - Fixed shared networking NS’s

● But, namespacing is per daemon
● Not per container, as hoped

● Waiting on Linux
● Considering mass chmod / ZFS clones



Operational Visibility Evolution
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● What is “node” - containers on VM’s

● Soft limits / bursting a good thing?
○ Until percent util and outliers are considered

● System level metrics
○ Currently - hand coded cgroup scraping
○ Considering Intel Snap replacement

● Pollers - Metrics, Health, Discovery
○ Created Edda common “server group” view



Future Execution Focus
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● Better Isolation (agents, networking, block I/O, etc.)

● Exposing our implementation of “Pod”’s to users

● Better resiliency (DNS dependencies reduced)



Job Management and Resource Scheduling
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Lesson:  Complexity in scheduling
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● Resilience
○ Balance instances across EC2 zones, 

instances within a zone

● Security
○ Two level resource for ENIs

● Placement optimization
○ Resource affinity
○ Task locality
○ Bin packing (Auto Scaling)



Lesson:  Keep resource scheduling extensible
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Fenzo - Extensible Scheduling Library

Features:
● Heterogeneous resources & tasks
● Autoscaling of mesos cluster

○ Multiple instance types
● Plugins based scheduling objectives

○ Bin packing, etc.
● Plugins based constraints evaluator

○ Resource affinity, task locality, etc.
● Scheduling actions visibility

https://github.com/Netflix/Fenzo

https://github.com/Netflix/Fenzo/wiki
https://github.com/Netflix/Fenzo/wiki


Cluster Autoscaling Challenge
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Resources assigned in Titus
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● CPU, memory, disk capacity

● Per container AWS EC2 Security groups, IP, and 
network bandwidth via custom driver

● Abstracting out EC2 instance types



Security groups and their resources
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A two level resource per EC2 Instance: N ENIs, each with M IPs

ENI 0

Assigned Security Group: SG1 Used IPs Count: 2 of 7

ENI 1

Assigned Security Group: SG1,SG2 Used IPs Count: 1 of 7

ENI 2

Assigned Security Group: SG3 Used IPs Count: 7 of 7



Lesson:  Scheduling Vs. Job Management
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Scheduling resources to tasks is common.

Lifecycle management is not.



Lesson:  Scheduling Vs. Job Management
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Task scheduling concerns

● Assign resources to tasks
● Cluster wide optimizations

○ Bin packing
○ Global constraints, like SLAs

● Task preferences and constraints
○ Locality with other tasks
○ Resource affinity

Job manager concerns

● Managing task/instance counts
● Creating metadata, defining constraints
● Lifecycle management

○ Replace failed task executions

● Handle failures
○ Rate limit requeuing & relaunching 
○ Time out tasks in transitionary states



Future Job Management & Scheduling Focus
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● More resources to track: GPUs

● Automatic resource affinity with heterogenous instances

● SLAs
○ Latencies for services
○ Throughput for batch
○ Task preemptions



Things we didn’t cover in this talk

● Overall integration
○ Chaos, continuous delivery, performance insight

● Container Execution
○ Logging (live log access & S3 log rotation)
○ Liveness and health checking
○ Isolation (disk usage, networking, block I/O)
○ Image registry (metrics, security scanning)

● Scheduling
○ Autoscaling heterogeneous pools
○ Host-task fitness criteria

● API
○ Extensibility, polymorphic, SLA and job/container ownership 32



Agenda

● Why containers at Netflix?

● What did we build and what did we learn?

● What are our current and future workloads?
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Current Titus Production Usage
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● Autoscaling
○ 100’s of r3.8xl’s
○ Each 32 vCPU, 244G

● Peak
○ Thousands of cores
○ Tens of TB’s memory

● Thousands containers/day
○ ~ 100 different images



Workloads, Past

● Most current usage is batch
○ Algorithm training, adhoc reporting jobs

● Sampling:
○ Training of “sims” and A/B test models
○ Open Connect Device/IX reporting
○ Web security scanning and analysis
○ Social media analytics updates
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Workloads, Now 

● Spent last five months adding service style support

● First line of fire customer requests already received

● Larger scale shadow and trickle traffic throughout 2Q

● First service style apps
○ Finer grained instances - NodeJS
○ Docker provided local developer experience
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Workloads, Coming

● Media Encoding
○ Thousands of VM’s
○ VM based resource scheduling
○ Considering containers to have faster start-up
○ Internal spot-market - trough borrowing

● SPaaS
○ 10’s of thousands of containers
○ Stream Processing as a Service
○ Convert scheduling systems to Titus
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Questions?
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Other Netflix QCon Talks
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Title Time Speaker(s)

The Netflix API Platform for 
Server-Side Scripting

Monday 10:35 Katharina Probst

Scheduling A Fuller House: 
Container Mgmt @ Netflix

Tuesday 10:35 Andrew Spyker & 
Sharma Podila

Chaos Kong - Endowing 
Netflix with Antifragility

Tuesday 11:50 Luke Kosewski

The Evolution of the 
JavaScript

Wednesday 4:10 Jafar Husain

Async Programming in JS:  
The End of the Loop

Friday 9:00 Jafar Husain


