
Scheduling a Fuller House:
Container Management

Sharma Podila, Andrew Spyker - Senior Software Engineers

About Netflix

● 81.5M members
● 2000+ employees (1400 tech)
● 190+ countries
● > 100M hours watch per day
● > ⅓ NA internet download traffic
● 500+ Microservices
● Many 10’s of thousands VM’s
● 3 regions across the world

2

Agenda

● Why containers at Netflix?

● What did we build and what did we learn?

● What are our current and future workloads?

3

⇨

Why a 2nd edition of virtualization?

● Given our resilient cloud native, CI/CD devops enabled,
elastically scalable virtual machine based architecture,
did we really need containers? 4

Motivating factors for containers

● Simpler management of compute resources

● Simpler deployment packaging artifacts for compute jobs

● Need for a consistent local developer environment

5

Simpler compute, Management & Packaging

Batch/stream processing jobs

● Here are the files to run my process
● I need m cores, n disk, and o memory
● Please just run it for me!

6

Service style jobs (VM’s)

● Use tested/secure base AMI
● Bake an AMI
● Define launch config
● Choose t-shirt sized instance
● Canary & red/black ASG’s

Consistent developer experience

● Many years focused on
○ Build, bake / cloud deploy / operational experience
○ Not as much time focused on developer experience

● New Netflix local developer experience based on Docker

● Has had a benefit in both directions
○ Cloud like local development environment
○ Easier operational debugging of cloud workloads

7

What about resource optimization?

● Not absolutely required and easier to get wins at larger
scale across larger virtual machine fleet

● However, potential benefits to
○ Elastic resource pool for scaling batch & adhoc jobs
○ Reliable smaller instance sizes for NodeJS
○ Cross Netflix resource optimizations

■ Trough usage, instance type migration
8

Agenda

● Why containers at Netflix?

● What did we build and what did we learn?

● What are our current and future workloads?

9

⇨

VMVM

Lesson: Support containers by leveraging
existing Netflix IaaS focused cloud platform

10

Atlas

EC2

A
W

S
 A

ut
oS

ca
le

r

VMs

App

Cloud Platform
(metrics, IPC, health)

Eureka

VPC

Edda

Existing - VM’s

VMVM

Atlas

EC2

Ti
tu

s
Jo

b
C

on
tro

l

Containers

App

Cloud Platform
(metrics, IPC, health)

Eureka

VPC

Edda

Titus - Containers

VMVM

Batch
Containers

VMVM

11

EC2

A
W

S
 A

ut
oS

ca
le

r
VMs

App

Cloud Platform
(metrics, IPC, health)

VPC

Netflix Cloud Infrastructure (VM’s + Containers)

VMVM

Atlas

Ti
tu

s
Jo

b
C

on
tro

l

Containers

App

Cloud Platform
(metrics, IPC, health)

Eureka Edda

VMVM

Batch
Containers

Why - Single consistent cloud platform

Lesson: Buy vs. Build, Why build our own?
● Looking across other container management solutions

○ Mesos, Kubernetes, and Swarm
● Proven solutions are focused on the datacenter
● Newer solutions are

○ Working to abstract datacenter and cloud
○ Delivering more than cluster manager

■ PaaS, Service discovery, IPC
■ Continuous deployment
■ Metrics

○ Not yet at our level of scale
● Not appropriate for Netflix 12

“Project Titus” (Firehose peek)

13

Titus UITitus UI

Docker
Registry
Docker
Registry

Rhea

container
container

container

docker

Titus Agent metrics agent

Titus executor

logging agent

zfs

mesos agent

docker

RheaTitus API

Cassandra

Titus Master

Job Management &
Scheduler

S3

Zookeeper
Docker
Registry

EC2 Autocaling
API

Mesos Master

Titus UI

Fenzo

container

Pod & VPC net
drivers

container
container

AWS container
metadata proxy

Integration

CI/CD Amazon VM’s

Is that all?

14

Container Execution

15

Titus UITitus UI

Docker
Registry
Docker
Registry

Rhea

container
container

container

docker

Titus Agent metrics agent

Titus executor

logging agent

zfs

mesos agent

docker

RheaTitus API

Cassandra

Titus Master

Job Management &
Scheduler

S3

Zookeeper
Docker
Registry

EC2 Autocaling
API

Mesos Master

Titus UI

Fenzo

container

Pod & VPC net
drivers

container
container

AWS container
metadata proxy

CI/CD Amazon VM’s

Lesson: What you lose with Docker on EC2

16

+ <
● Networking: VPC
● Security: Security Groups, IAM Roles
● Context: Instance Metadata, User Data / Env Context
● Operational Visibility: Metrics, Health checking
● Resource Isolation: Networking, Local Storage

MU
LTI

-TE
NA

NT

Lesson: Making Containers Act Like VM’s

17

● Built: EC2 Metadata Proxy
○ Provide overridden scheduled IAM role, instance id
○ Proxy other values

● Provided: Provide Environmental Context
○ Titus specific job and task info
○ ASG app, stack, sequence, other EC2 standard

● Why? Now:
○ Service discovery registration works
○ Amazon service SDK based applications work

Lesson: Networking will continue to evolve

18

● Started with batch
○ Started with “bridge” with port mapping
○ Added “host” with port resource mapping (for performance?)
○ Continue to use “bridge” without port mapping

● Service style apps added
○ Added “nfvpc” VPC IP/container with libnetwork plugin
○ Removed Host (no value over VPC IP/container)
○ Changed “nfvpc” VPC IP/container

■ Pod based with customer executor (no plugin)
○ Added security groups to “nfvpc”

Plumbing VPC Networking into Docker

19

No IP Needed

Task 0

SecGrp Y

Task 1 Task 2 Task 3

docker0 (*)

EC2 VMeth0

eni0
SG=Titus Agent

eth1

eni1
SecGrp=X

eth2

eni2
SG=Y

IP 1
IP 2

IP 3

pod root

veth<id>

app

SecGrp X

pod root

veth<id>

app

SecGrp X

pod root

veth<id>

appapp

veth<id>

Linux Policy
Based Routing

EC2
Metadata

Proxy

169.254.169.254
IPTables NAT (*)

* **

169.254.169.254

Lesson: Secure Multi-tenancy is Hard

20

Common to VM’s and tiered security needed
● Protect the reduced host IAM role, Allow containers to have specific IAM roles
● Needed to support same security groups in container networking as VM’s

User namespacing
● Docker 1.10 - Introduced User Namespaces

● Didn’t work /w shared networking NS
● Docker 1.11 - Fixed shared networking NS’s

● But, namespacing is per daemon
● Not per container, as hoped

● Waiting on Linux
● Considering mass chmod / ZFS clones

Operational Visibility Evolution

21

● What is “node” - containers on VM’s

● Soft limits / bursting a good thing?
○ Until percent util and outliers are considered

● System level metrics
○ Currently - hand coded cgroup scraping
○ Considering Intel Snap replacement

● Pollers - Metrics, Health, Discovery
○ Created Edda common “server group” view

Future Execution Focus

22

● Better Isolation (agents, networking, block I/O, etc.)

● Exposing our implementation of “Pod”’s to users

● Better resiliency (DNS dependencies reduced)

Job Management and Resource Scheduling

23

Titus UITitus UI

Docker
Registry
Docker
Registry

Rhea

container
container

container

docker

Titus Agent metrics agent

Titus executor

logging agent

zfs

mesos agent

docker

RheaTitus API

Cassandra

Titus Master

Job Management &
Scheduler

S3

Zookeeper
Docker
Registry

EC2 Autocaling
API

Mesos Master

Titus UI

Fenzo

container

Pod & VPC net
drivers

container
container

AWS container
metadata proxy

CI/CD Amazon VM’s

Lesson: Complexity in scheduling

24

● Resilience
○ Balance instances across EC2 zones,

instances within a zone

● Security
○ Two level resource for ENIs

● Placement optimization
○ Resource affinity
○ Task locality
○ Bin packing (Auto Scaling)

Lesson: Keep resource scheduling extensible

25

Fenzo - Extensible Scheduling Library

Features:
● Heterogeneous resources & tasks
● Autoscaling of mesos cluster

○ Multiple instance types
● Plugins based scheduling objectives

○ Bin packing, etc.
● Plugins based constraints evaluator

○ Resource affinity, task locality, etc.
● Scheduling actions visibility

https://github.com/Netflix/Fenzo

https://github.com/Netflix/Fenzo/wiki
https://github.com/Netflix/Fenzo/wiki

Cluster Autoscaling Challenge

26

Host 4Host 3Host 1
vs.

For long running stateful services

Host 1 Host 2

Host 2

Host 3 Host 4

Resources assigned in Titus

27

● CPU, memory, disk capacity

● Per container AWS EC2 Security groups, IP, and
network bandwidth via custom driver

● Abstracting out EC2 instance types

Security groups and their resources

28

A two level resource per EC2 Instance: N ENIs, each with M IPs

ENI 0

Assigned Security Group: SG1 Used IPs Count: 2 of 7

ENI 1

Assigned Security Group: SG1,SG2 Used IPs Count: 1 of 7

ENI 2

Assigned Security Group: SG3 Used IPs Count: 7 of 7

Lesson: Scheduling Vs. Job Management

29

Scheduling resources to tasks is common.

Lifecycle management is not.

Lesson: Scheduling Vs. Job Management

30

Task scheduling concerns

● Assign resources to tasks
● Cluster wide optimizations

○ Bin packing
○ Global constraints, like SLAs

● Task preferences and constraints
○ Locality with other tasks
○ Resource affinity

Job manager concerns

● Managing task/instance counts
● Creating metadata, defining constraints
● Lifecycle management

○ Replace failed task executions

● Handle failures
○ Rate limit requeuing & relaunching
○ Time out tasks in transitionary states

Future Job Management & Scheduling Focus

31

● More resources to track: GPUs

● Automatic resource affinity with heterogenous instances

● SLAs
○ Latencies for services
○ Throughput for batch
○ Task preemptions

Things we didn’t cover in this talk

● Overall integration
○ Chaos, continuous delivery, performance insight

● Container Execution
○ Logging (live log access & S3 log rotation)
○ Liveness and health checking
○ Isolation (disk usage, networking, block I/O)
○ Image registry (metrics, security scanning)

● Scheduling
○ Autoscaling heterogeneous pools
○ Host-task fitness criteria

● API
○ Extensibility, polymorphic, SLA and job/container ownership 32

Agenda

● Why containers at Netflix?

● What did we build and what did we learn?

● What are our current and future workloads?

33

⇨

Current Titus Production Usage

34

● Autoscaling
○ 100’s of r3.8xl’s
○ Each 32 vCPU, 244G

● Peak
○ Thousands of cores
○ Tens of TB’s memory

● Thousands containers/day
○ ~ 100 different images

Workloads, Past

● Most current usage is batch
○ Algorithm training, adhoc reporting jobs

● Sampling:
○ Training of “sims” and A/B test models
○ Open Connect Device/IX reporting
○ Web security scanning and analysis
○ Social media analytics updates

35

Workloads, Now

● Spent last five months adding service style support

● First line of fire customer requests already received

● Larger scale shadow and trickle traffic throughout 2Q

● First service style apps
○ Finer grained instances - NodeJS
○ Docker provided local developer experience

36

Workloads, Coming

● Media Encoding
○ Thousands of VM’s
○ VM based resource scheduling
○ Considering containers to have faster start-up
○ Internal spot-market - trough borrowing

● SPaaS
○ 10’s of thousands of containers
○ Stream Processing as a Service
○ Convert scheduling systems to Titus

37

Questions?

38

Other Netflix QCon Talks

39

Title Time Speaker(s)

The Netflix API Platform for
Server-Side Scripting

Monday 10:35 Katharina Probst

Scheduling A Fuller House:
Container Mgmt @ Netflix

Tuesday 10:35 Andrew Spyker &
Sharma Podila

Chaos Kong - Endowing
Netflix with Antifragility

Tuesday 11:50 Luke Kosewski

The Evolution of the
JavaScript

Wednesday 4:10 Jafar Husain

Async Programming in JS:
The End of the Loop

Friday 9:00 Jafar Husain

