Scalable Post-Mortem

Debugging

Abel Mathew

CEO - Backtrace

amathew@backtrace.io
@nullisntO

=AMl Backtrace

Debugging... or
Sleeping?

:E‘ Backtrace

Debugging

- Debugging: examining (program state, design, code, output) to
identify and remove errors from software.

- Errors come in many forms: fatal, non-fatal, expected and
unexpected

- The complexity of systems means more production debugging

- Pre-release tools like static analysis, model checking help catch
errors before they hit production, but aren't a complete solution.

=AMl Backtrace

Debugging Methods

- Breakpoint
- Printf/Logging/Tracing

- Post-Mortem

=AMl Backtrace

=4 Backtrace

Breakpoint

Log Analysis / Tracing

- The use of instrumentation to extract data for empirical
debugging.

- Useful for:

- observing behavior between components/services (e.g. end to
end latency)

- non-fatal & transient failure that cannot otherwise be made
explicit

=AMl Backtrace

Log Analysis / Tracing

- Log Analysis Systems:
- Splunk, ELK, many others...
- Tracing Systems:

- Dapper, HTrace, Zipkin, Stardust, X-Trace

=AMl Backtrace

Post-Mortem Debugging

- Using captured program state from a point-in-time to debug failure post-mortem or
after-the-fact

- Work back from invalid state to make observations about how the system got there.
- Benefits:

- No overhead except for when state is being captured (at the time of death,
assertion, explicit failure)

- Allows for a much richer data set to be captured
- Investigation + Analysis is done independent of the failing system'’s lifetime.

- Richer data + Independent Analysis == powerful investigation

=AMl Backtrace

Post-Mortem Debugging

- Rich data set also allows you to make observations about your
software beyond fixing the immediate problem.

- Real world examples include:
- |leak investigation
- malware detection

- assumption violation

=AMl Backtrace

Post-Mortem Facilities

- Most operating environments have facilities in place to extract
dumps from a process.

- How do you get this state?

- How do you interpret it?

=AMl Backtrace

PMF: Java

- Extraction: heap dumps

* -XX:+HeapDumpOnOutOfMemoryError

e Can use jmap -dump:[live,]format=b,file=<filename> <PID> on a live process or core dump

» Can filter out objects based on “liveness”

» Note: this will pause the JVM when running on a live process
Extraction: stack traces / “thread dump”
e Send SIGQUIT on a live process
- jstack <process | core dump>

« -1 prints out useful lock and synchronization information

e -m prints both Java and native C/C++ frames

=AMl Backtrace

PMF: Java

* Inspecting heap dumps: Eclipse MAT

Visibility into shallow heap, retained heap, dominator tree.

£ java_pid50785.0001.hprof &%
inl el E& || EBa |

i Overview | Jjl Histogram %g dominator_tree &3
Class Name
S <hegex=
¥\] java.lang.Thread @ 0x7f42b6078 main Thread
v D com.example.mat.Controller @ 0x7f42b0170
v com.example.mat.Allocator @ 0x7f42b0128
> D java.util.ArrayList @ 0x7f42b9¢30
» [java.util. ArrayList @ 0x7f42b9c48
2. Total: 2 entries
> com.example.mat.List2 @ 0x7f42b0140
> D com.example.mat.Listl @ 0x7f42b0150
> D com.example.mat.Listener @ 0x7f3000098
> D com.example.mat.Listener @ 0x7f3000158
> D com.example.mat.Listener @ 0x7f3000218
> D com.example.mat.Listener @ 0x7f30002d8
b [ram evamnle mat Listenar @ Ox7f30003AQR

http://eclipsesource.com/blogs/2013/01/21/10-tips-for-using-the-eclipse-memory-analyzer/

Shallow Heap |Retained Heap v

<Numeric>
112
24
24
24
24

16
16
16
16
16
16
16

<Numeric>
11,711,216
11,710,416
1,059,192
529,584
529,584

529,600
529,600
96
96
96
96
96

Percentage

<Numeric>

97.45%
97.44%
8.81%
4.41%
4.41%

4.41%
4.41%
0.00%
0.00%
0.00%
0.00%
0.00%

:E‘ Backtrace

PMF: Java

* Inspecting heap dumps: jhat

* Both MAT and jhat expose OQL to query heap dumps for, amongst

other things, differential analysis.

[J] Allocator.java
ionl %l EL& Q|| B Bse

i Overview | lil Histogram | B finalizer_overview | dal OQL 53

java_pid51286.0 53 | & java_pid51334.0

SELECT toString(s), s.count FROM java.lang.String s WHERE (toString(s) NOT LIKE

"message.*")

toString(s) s.count
L. Rer

local|*.local|169.254/16|*.169.254/16 37
ftp.nonProxyHosts 17
/System/Library/Java/Extensions/j3daudio.jar 44
2. Total: 3 of 730 entries; 727 more

<Numeric>

http://eclipsesource.com/blogs/2013/01/21/10-tips-for-using-the-eclipse-memory-analyzer/

:E‘ Backtrace

PMF: Python

- Extraction: os.abort() or running gcore' on the process

- Inspection: gdbinit — a number of macros to interpret Python
cores

- py-list: lists python source code from frame context
- py-bt: Python level backtrace

- pystackv: get a list of Python locals with each stack frame

=AMl Backtrace

PMF: Python

“heap select” to query the Python heap.

(gdb) heap
Domain

uncategorized
python

uncategorized
python
python
python

(snipped)

str

PyDictEntry table
PyDictEntry table

str

code

function

wrapper_descriptor

(gdb) heap select kind="string data" and size > 512
Blocks retrieved 10000

0x0000000000624070
0x0000000000627b50
0x0000000000628b90
0x0000000000661320
0x00000000006a2410

End Domain

0x000000000062430£
0x0000000000627e8£
0x0000000000628e0£
0x000000000066170%
0x00000000006a27£f£

string data
string data
string data
string data
string data

dict

Detail

Detail

interned
bytecode
32 bytes

4128 bytes

Count Allocated size

477,840
456,944
200,704
92,024
91,712
82,944
78,432
73,080
72,400
71,200

gdb-heap — extract statistics on object counts, etc. Provides

Hexdump
|A context manager th]|

|A decorator indicati]
|Metaclass for defini|

:E‘ Backtrace

PMF: Go

- Basic tooling available via lldb & mdb.

- GOTRACEBACK=crash environment variable enables core dumps

=AMl Backtrace

PMF: Node.js

* —abort_on_uncaught_exception generates a coredump

- Rich tooling for mdb and Iinode to provide visibility into the heap,
object references, stack traces and variable values from a coredump

- Commands:

+ jsframe -iv: shows you frames with parameters

- jsprint: extracts variable values

- findjsobjects: find reference object type and their children

=AMl Backtrace

PMF: Node.js

- Debugging Node.js in Production @ Netflix by Yunong Xiao goes in-
depth on solving a problem in Node.JS using post-mortem analysis

- Generates coredumps on Netflix Node.JS processes to investigate
memory leak

- Used findjsobject to find growing object counts between
coredumps

» Combining this with jsprint and findjsobject -r to find that for
each ‘require’ that threw an exception, module metadata objects
were "“leaked”

=AMl Backtrace

PMF: C/C++

- The languages we typically associate post-mortem debugging
with.

- Use standard tools like gdb, lldb to extract and analyze data from
core dumps.

- Commercial and open-source (core-analyzer) tools available to
automatically highlight heap mismanagement, pointer corruption,
function constraint violations, and more

=AMl Backtrace

Scalable?

- With massive, distributed systems, one off investigations are no
longer feasible.

- We can build systems that automate and enhance post-mortem
analysis across components and instances of failure.

- Generate new data points that come from “debugging failure at
large.”

- Leverage the rich data set to make deeper observations about our
software, detect latent bugs and ultimately make our systems
more reliable.

=AMl Backtrace

Microsoft's WER

Debugging in the (Very) Large:
Ten Years of Implementation and Experience

Kirk Glerum, Kinshuman Kinshumann, Steve Greenberg, Gabriel Aul,

Vince Orgovan, Greg Nichols, David Grant, Gretchen Loihle, and Galen Hunt
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

- Microsoft's distributed post-mortem debugging system used for
Windows, Office, internal systems and many third-party vendors.

- In 2009: "WER is the largest automated error-reporting system in
existence. Approximately one billion computers run WER client
code”

:E‘ Backtrace

WER

 “WER collects error reports for crashes, non-fatal assertion
failures, hangs, setup failures, abnormal executions, and device

failures.”

« Automated the collection of memory dumps, environmental data,
configuration, etc

« Automated the diagnosis, and in some cases, the resolution of
failure

... with very little human effort

=AMl Backtrace

P
9

Figure 8. WER Servers.

=AMl Backtrace

WER: Automation

o “Forexample, in February 2007, users of Windows Vista were attacked by the
Renos malware. If installed on a client, Renos caused the Windows GUI shell,
explorer.exe, to crash when it tried to draw the desktop. The user’s experience
of a Renos infection was a continuous loop in which the shell started, crashed,
and restarted. While a Renos-infected system was useless to a user, the
system booted far enough to allow reporting the error to WER—on computers
where automatic error reporting was enabled—and to receive updates from
Wwu.”

=AMl Backtrace

WER: Automation

1,200,000
> 1,000,000
800,000
600,000
400,000
200,000

0
1-Feb-07 15-Feb-07 1-Mar-07 15-Mar-07 29-Mar-07

Reports per Da

Figure 10. Renos Malware: Number of error
reports per day. Black bar shows when the fix was
released through WU.

=AMl Backtrace

WER: Bucketing

- WER aggregated errors from items through labels and classifiers

- labels: use client-side info to key error reports on the ““same bug”

- program name, assert & exception code

- classifiers: insights meant to maximize programmer effectiveness

heap corruption, image/program corruption, malware identified
- Bucketing extracts failure volumes by type, which helped with prioritization

- Buckets enabled automatic failure type detection which allowed
automated failure response.

=AMl Backtrace

WER
@I?I@I?I?I@II?I?I?I?I?

Basic grouping/bucketing [

Deeper analysis (lanalyze) ‘ [[[[
Ejn e ﬂi II

Figure 8. WER Servers.

=AMl Backtrace

WER: SBD

Statistics-based debugging

« With a rich data set, WER enabled developers to find correlations
with invalid program state and outside characteristics.

o “stack sampling” helped them pinpoint frequently occurring
functions in faults (instability or APl misuse)

« Programmers could evaluate hypotheses on component behavior
against large sets of memory dumps

=AMl Backtrace

Post-Mortem Analysis

- Only incurs overhead at the time of failure

- Allows for a more rich data set, in some cases the complete
program state, to be captured

- The system can be restarted independent of analysis of program
state which enables deep investigation.

=AMl Backtrace

Scalable Post-Mortem Analysis

- Scalable Post-Mortem Analysis
- “"Debugging at Large”
- Multiple samples to test hypothesis against
- Correlate failure with richer set of variables

- Automate detection, response, triage, and resolution of failures

=AMl Backtrace

Scalable Post-Mortem

Debugging

Abel Mathew

CEO - Backtrace

amathew@backtrace.io
@nullisntO

=AMl Backtrace

