
Scalable Post-Mortem
Debugging
Abel Mathew

CEO - Backtrace
amathew@backtrace.io
@nullisnt0

Debugging… or
Sleeping?

Debugging

• Debugging: examining (program state, design, code, output) to
identify and remove errors from software.

• Errors come in many forms: fatal, non-fatal, expected and
unexpected

• The complexity of systems means more production debugging

• Pre-release tools like static analysis, model checking help catch
errors before they hit production, but aren’t a complete solution.

Debugging Methods
• Breakpoint

• Printf/Logging/Tracing

• Post-Mortem

Breakpoint

Log Analysis / Tracing
• The use of instrumentation to extract data for empirical

debugging.

• Useful for:

• observing behavior between components/services (e.g. end to
end latency)

• non-fatal & transient failure that cannot otherwise be made
explicit

Log Analysis / Tracing
• Log Analysis Systems:

• Splunk, ELK, many others…

• Tracing Systems:

• Dapper, HTrace, Zipkin, Stardust, X-Trace

Post-Mortem Debugging
• Using captured program state from a point-in-time to debug failure post-mortem or

after-the-fact

• Work back from invalid state to make observations about how the system got there.

• Benefits:

• No overhead except for when state is being captured (at the time of death,
assertion, explicit failure)

• Allows for a much richer data set to be captured

• Investigation + Analysis is done independent of the failing system’s lifetime.

• Richer data + Independent Analysis == powerful investigation

Post-Mortem Debugging
• Rich data set also allows you to make observations about your

software beyond fixing the immediate problem.

• Real world examples include:

• leak investigation

• malware detection

• assumption violation

Post-Mortem Facilities
• Most operating environments have facilities in place to extract

dumps from a process.

• How do you get this state?

• How do you interpret it?

PMF: Java
• Extraction: heap dumps

• -XX:+HeapDumpOnOutOfMemoryError

• Can use jmap -dump:[live,]format=b,file=<filename> <PID> on a live process or core dump

• Can filter out objects based on “liveness”

• Note: this will pause the JVM when running on a live process

• Extraction: stack traces / “thread dump”

• Send SIGQUIT on a live process

• jstack <process | core dump>

• -l prints out useful lock and synchronization information

• -m prints both Java and native C/C++ frames

PMF: Java
• Inspecting heap dumps: Eclipse MAT

• Visibility into shallow heap, retained heap, dominator tree.

http://eclipsesource.com/blogs/2013/01/21/10-tips-for-using-the-eclipse-memory-analyzer/

PMF: Java
• Inspecting heap dumps: jhat

• Both MAT and jhat expose OQL to query heap dumps for, amongst
other things, differential analysis.

http://eclipsesource.com/blogs/2013/01/21/10-tips-for-using-the-eclipse-memory-analyzer/

PMF: Python
• Extraction: os.abort() or running `gcore` on the process

• Inspection: gdbinit — a number of macros to interpret Python
cores

• py-list: lists python source code from frame context

• py-bt: Python level backtrace

• pystackv: get a list of Python locals with each stack frame

PMF: Python
• gdb-heap — extract statistics on object counts, etc. Provides

“heap select” to query the Python heap.

PMF: Go
• Basic tooling available via lldb & mdb.

• GOTRACEBACK=crash environment variable enables core dumps

PMF: Node.js
• —abort_on_uncaught_exception generates a coredump

• Rich tooling for mdb and llnode to provide visibility into the heap,
object references, stack traces and variable values from a coredump

• Commands:

• jsframe -iv: shows you frames with parameters

• jsprint: extracts variable values

• findjsobjects: find reference object type and their children

PMF: Node.js
• Debugging Node.js in Production @ Netflix by Yunong Xiao goes in-

depth on solving a problem in Node.JS using post-mortem analysis

• Generates coredumps on Netflix Node.JS processes to investigate
memory leak

• Used findjsobject to find growing object counts between
coredumps

• Combining this with jsprint and findjsobject -r to find that for
each `require` that threw an exception, module metadata objects
were “leaked”

PMF: C/C++
• The languages we typically associate post-mortem debugging

with.

• Use standard tools like gdb, lldb to extract and analyze data from
core dumps.

• Commercial and open-source (core-analyzer) tools available to
automatically highlight heap mismanagement, pointer corruption,
function constraint violations, and more

Scalable?
• With massive, distributed systems, one off investigations are no

longer feasible.

• We can build systems that automate and enhance post-mortem
analysis across components and instances of failure.

• Generate new data points that come from “debugging failure at
large.”

• Leverage the rich data set to make deeper observations about our
software, detect latent bugs and ultimately make our systems
more reliable.

Microsoft’s WER

• Microsoft’s distributed post-mortem debugging system used for
Windows, Office, internal systems and many third-party vendors.

• In 2009: “WER is the largest automated error-reporting system in
existence. Approximately one billion computers run WER client
code”

WER
• “WER collects error reports for crashes, non-fatal assertion

failures, hangs, setup failures, abnormal executions, and device
failures.”

• Automated the collection of memory dumps, environmental data,
configuration, etc

• Automated the diagnosis, and in some cases, the resolution of
failure

• … with very little human effort

WER

WER: Automation
• “For example, in February 2007, users of Windows Vista were attacked by the

Renos malware. If installed on a client, Renos caused the Windows GUI shell,
explorer.exe, to crash when it tried to draw the desktop. The user’s experience
of a Renos infection was a continuous loop in which the shell started, crashed,
and restarted. While a Renos-infected system was useless to a user, the
system booted far enough to allow reporting the error to WER—on computers
where automatic error reporting was enabled—and to receive updates from
WU.”

WER: Automation

WER: Bucketing
• WER aggregated errors from items through labels and classifiers

• labels: use client-side info to key error reports on the “same bug”
• program name, assert & exception code

• classifiers: insights meant to maximize programmer effectiveness
• heap corruption, image/program corruption, malware identified

• Bucketing extracts failure volumes by type, which helped with prioritization

• Buckets enabled automatic failure type detection which allowed
automated failure response.

WER

Basic grouping/bucketing

Deeper analysis (!analyze)

WER: SBD
Statistics-based debugging

• With a rich data set, WER enabled developers to find correlations
with invalid program state and outside characteristics.

• “stack sampling” helped them pinpoint frequently occurring
functions in faults (instability or API misuse)

• Programmers could evaluate hypotheses on component behavior
against large sets of memory dumps

Post-Mortem Analysis
• Only incurs overhead at the time of failure

• Allows for a more rich data set, in some cases the complete
program state, to be captured

• The system can be restarted independent of analysis of program
state which enables deep investigation.

Scalable Post-Mortem Analysis
• Scalable Post-Mortem Analysis

• “Debugging at Large”

• Multiple samples to test hypothesis against

• Correlate failure with richer set of variables

• Automate detection, response, triage, and resolution of failures

Scalable Post-Mortem
Debugging
Abel Mathew

CEO - Backtrace
amathew@backtrace.io
@nullisnt0

