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eslie Lamport, known for his seminal work in
distributed systems, famously said, “A distributed
system is one in which the failure of a computer

you didn’'t even know existed can render your own
computer unusable.” Given this bleak outlook and the
large set of possible failures, how do you even begin to verify
and validate that the distributed systems you build are doing
the right thing?

Distributed systems are difficult to build and test for two
main reasons: partial failure and asynchrony. Asynchrony is
the nondeterminism of ordering and timing within a system;
essentially, there is no now.° Partial failure is the idea that
components can fail along the way, resulting inincomplete
results or data.
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the failure of a computer you didn't even
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Abstract

Distributed Systems are difficult to build and test for two main reasons: partial failure & asynchron
distributed systems must be addressed to create a correct system, and often times the resulting ¢
degree of complexity. Because of this complexity, testing and verifying these systems is critically |

R f r n will discuss strategies for proving a system is correct, like formal methods, and less strenuous me
help increase our confidence that our systems are doing the right thing.
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Formal Specifications

‘Wrilten deacription of what a aystem s supposed to do
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Y T+ Hour Clock Specification Y

MODULE HourClock
EXTENDS Naturals
VARIABLE hr

HCini == hr \in (1 .. 12)
HCnxt == hr'’ = IF hr # 12 THEN hr + 1 ELSE 1
HC == HCini /\ [][HCnxt] hr

THEOREM HC => [ ]HCini

Leslie Lamport, Specifying Systems



Use of Formal Methods at Amazon Web Services

Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, Michael Deardeuff
Amazon.com

29" September, 2014

Since 2011, engineers at Amazon Web Services (AWS) have been using formal specification and model
checking to help solve difficult design problems in critical systems. This paper describes our motivation
and experience, what has worked well in our problem domain, and what has not. When discussing
personal experiences we refer to authors by their initials.

At AWS we strive to build services that are simple for customers to use. That external simplicity is built
on a hidden substrate of complex distributed systems. Such complex internals are required to achieve
high availability while running on cost-efficient infrastructure, and also to cope with relentless rapid
business growth. As an example of this growth; in 2006 we launched S3, our Simple Storage Service. In
the 6 years after launch, S3 grew to store 1 trillion objects '*\. Less than a year later it had grown to 2
trillion objects, and was regularly handling 1.1 million requests per second %’

S3 is just one of tens of AWS services that store and process data that our customers have entrusted to
us. To safeguard that data, the core of each service relies on fault-tolerant distributed algorithms for
replication, consistency, concurrency control, auto-scaling, load balancing, and other coordination tasks.
There are many such algorithms in the literature, but combining them into a cohesive system is a major
challenge, as the algorithms must usually be modified in order to interact properly in a real-world
system. In addition, we have found it necessary to invent algorithms of our own. We work hardt  »id
unnecessary complexity, but the essential complexity of the task remains high.

High complexity increases the probability of human error in design, code, and operations. Err/
core of the system could cause loss or corruption of data, or violate other interface contract. on which

our customers depend. So, before launching such a service, we need to reach extremely high confidence
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S3 & 10+ Core Pieces of
Infrastructure Verified

2 Serious Bugs Found

Increased Confidence to make
Optimizations

DynamoDB

Internal
distributed
lock manager

Applying TLA+ to some of our more complex systems

(excl. comments)
network algorlthm PlusCal in proposed optlmlzatlons
Background redistribution of - Found 1 bug, and found a bug in
data PlusCal the first proposed fix.
E—— A P Tl
membership system TLA+ traces of 35 steps
Improved confidence. Failed to
PlusCal find a liveness bug as we did not
check liveness.
Fault tolerant replication and
reconfiguration algorithm TLA+ aggressive optimization.

Use of Formal Methods at Amazon Web Services



“Formal methods deal with
- models of systems, not the :
systems themselves’ '

Use of Formal Methods at Amazon Web Services
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“Its a good idea to understand a aystem
before building it, a0 its a good idea to write
a apecification of a aystem before

mp ing it”

‘-j Leslie Lamport, Specifying Systems
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Planning for Change in a Formal Verification
of the Raft Consensus Protocol

Doug Woos  James R. Wilcox  Steve Anton
Zachary Tatlock  Michael D. Emst  Thomas Anderson

University of Washington, USA
{dwoos, jrwl2, santon, ztatlock, mernst, tom}@cs.washington.edu

Abstract

We present the first formal verification of state machine safety for the
Raft consensus protocol, a critical component of many distributed
systems. We connected our proof to previous work to establish an
end-to-end guarantee that our implementation provides linearizable
state machine replication. This proof required iteratively discovering
and proving 90 system invariants. Our verified implementation is
extracted to OCaml and runs on real networks.

The primary challenge we faced during the verification process
was proof maintenance, since proving one invariant often required
strengthening and updating other parts of our proof. To address this
challenge, we propose a methodology of planning for change during
verification. Our methodology adapts classical information hiding
techniques to the context of proof assistants, factors out common
invariant-strengthening patterns into custom induction principles,
proves higher-order lemmas that show any property proved about
a particular component implies analogous properties about related
components, and makes proofs robust to change using structural
tactics. We also discuss how our methodology may be applied to
systems verification more broadly.

Categories and Subject Descriptors F.3.1 [Specifying and Veri-
fying and Reasoning about Programs): Mechanical verification

Keywords Formal verification, distributed systems, proof assis-

of experience. Without the necessary tools to ensure the correctness
of their systems, there is little hope of eliminating errors.

In previous work, we began to address this challenge by building
Verdi [39], a framework for implementing and formally verifying
distributed systems in the Coq proof assistant [9]. In this paper we
describe our primary result to date using Verdi: the first formally veri-
fied implementation of the Raft [32] distributed consensus protocol.'
The original Verdi paper discusses an implementation of Raft as a
verified system transformer; Raft’s correctness, the classic lineariz-
ability property, is expressed as correctness of a transformation from
an arbitrary state machine to a fault tolerant system [39]. However,
our previous proofs were focused only on phrasing linearizability
as a VST correctness property; the proofs consisted of about 5000
lines and assumed several nontrivial invariants of the Raft protocol.
This paper discusses the verification of Raft as a whole, including all
the invariants from the original Raft paper [32]. These new proofs
consist of about 45000 additional lines. Combining this with our
previous proofs yields a complete proof that our Raft implementa-
tion is linearizable. Our effort yielded a verified implementation as
well as insights into managing the verification process.

Raft ensures that a cluster of machines presents a consistent view
of a state machine to the outside world, even in the presence of
machine failures and unreliable message delivery. Broadly speaking,
Raft provides similar functionality to the Paxos and Viewstamped
Replication protocols [21, 29]. In practice, clusters using such al-
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Chapar: Certified Causally Consistent
Distributed Key-Value Stores

Mohsen Lesani  Christian J. Bell =~ Adam Chlipala

Massachusetts Institute of Technology, USA
{lesani, cjbell, adamc}@mit.edu

Abstract

Today’s Internet services are often expected to stay available and
render high responsiveness even in the face of site crashes and
network partitions. Theoretical results state that causal consistency
is one of the strongest consistency guarantees that is possible
under these requirements, and many practical systems provide
causally consistent key-value stores. In this paper, we present
a framework called Chapar for modular verification of causal
consistency for replicated key-value store implementations and their
client programs. Specifically, we formulate separate correctness
conditions for key-value store implementations and for their clients.
The interface between the two is a novel operational semantics for
causal consistency. We have verified the causal consistency of two
key-value store implementations from the literature using a novel
proof technique. We have also implemented a simple automatic
model checker for the correctness of client programs. The two
independently verified results for the implementations and clients
can be composed to conclude the correctness of any of the programs
when executed with any of the implementations. We have developed
and checked our framework in Coq, extracted it to OCaml, and built
executable stores.

Categories and Subject Descriptors C.2.2 [Computer Communi-
cation Networks): Network Protocols— Verification; D.2.4 [Soft-
ware Engineering): Software/Program Verification—Correctness
Proofs

Program 1 (p;): Uploading a photo and posting a status
0 - Alice

put( Pic, ©); > uploads a new photo
put(Post, &») > announces it to her friends
1—- Bob
post + get(Post); > checks Alice’s post
photo + get(Pic); © then loads her photo

assert(post = & = photo # L)

...........................................................

Figure 1. Inconsistent trace of Photo-Upload example

the downtime of a replica, other replicas can keep the service
available, and the locality of replicas enhances responsiveness.

On the flip side, maintaining strong consistency across repli-
cas [30] can limit parallelism [35] and availability. When avail-
ability is a must, the CAP theorem [19] formulates a fundamental
trade-off between strong consistency and partition tolerance, and
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Verdi [39], a framework for implementing and formally verifying
distributed systems in the Coq proof assistant [9]. In this paper we
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ability property, is expressed as correctness of a transformation from
an arbitrary state machine to a fault tolerant system [39]. However,
our previous proofs were focused only on phrasing linearizability
as a VST correctness property; the proofs consisted of about 5000
lines and assumed several nontrivial invariants of the Raft protocol.
This paper discusses the verification of Raft as a whole, including all
the invariants from the original Raft paper [32]. These new proofs
consist of about 45000 additional lines. Combining this with our
previous proofs yields a complete proof that our Raft implementa-
tion is linearizable. Our effort yielded a verified implementation as
well as insights into managing the verification process.
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machine failures and unreliable message delivery. Broadly speaking,
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Abstract

Today’s Internet services are often expected to stay available and
render high responsiveness even in the face of site crashes and
network partitions. Theoretical results state that causal consistency
is one of the strongest consistency guarantees that is possible
under these requirements, and many practical systems provide
causally consistent key-value stores. In this paper, we present
a framework called Chapar for modular verification of causal
consistency for replicated key-value store implementations and their
client programs. Specifically, we formulate separate correctness

conditions for key-value store implementations and for their clients.

The interface between the two is a novel operational semantics for
causal consistency. We have verified the causal consistency of two
key-value store implementations from the literature using a novel
proof technique. We have also implemented a simple automatic
model checker for the correctness of client programs. The two
independently verified results for the implementations and clients
can be composed to conclude the correctness of any of the programs
when executed with any of the implementations. We have developed
and checked our framework in Coq, extracted it to OCaml, and built
executable stores.

Categories and Subject Descriptors C.2.2 [Computer Communi-
cation Networks): Network Protocols—Verification; D.2.4 [Soft-

ware Engineering): Software/Program Verification—Correctness
Proofs

Program 1 (p;): Uploading a photo and posting a status

0 - Alice
put(Pic, ©); > uploads a new photo
put( Post, &)

1—
post + get(Post);
photo + get(Pic);
assert(post = '+

put(Pic, ©)

Figure 1. Inconsiste
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On the flip side, maintaining strong consistency across repli-
cas [30] can limit parallelism [35] and availability. When avail-
ability is a must, the CAP theorem [19] formulates a fundamental
trade-off between strong consistency and partition tolerance, and
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Unit Tests

Teating of ‘Individual dSoftware
Components or Modules




Simple
Testing Can

Prevent
Most Critical
Failures

Simple Testing Can Prevent Most Critical Failures

An Analysis of Production Failures 1in Distributed Data-intensive Systems

Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao,
Yongle Zhang, Pranay U. Jain, Michael Stumm
University of Toronto

Abstract

Large, production quality distributed systems still fail pe-
riodically, and do so sometimes catastrophically, where
most or all users experience an outage or data loss. We
present the result of a comprehensive study investigat-
ing 198 randomly selected, user-reported failures that oc-
curred on Cassandra, HBase, Hadoop Distributed File
System (HDFES), Hadoop MapReduce, and Redis, with
the goal of understanding how one or multiple faults
eventually evolve into a user-visible failure. We found
that from a testing point of view, almost all failures re-
quire only 3 or fewer nodes to reproduce, which is good
news considering that these services typically run on a
very large number of nodes. However, multiple inputs
are needed to trigger the failures with the order between
them being important. Finally, we found the error logs
of these systems typically contain sufficient data on both
the errors and the input events that triggered the failure,
enabling the diagnose and the reproduction of the pro-
duction failures.

We found the majority of catastrophic failures could
easily have been prevented by performing simple testing
on error handling code — the last line of defense — even
without an understanding of the software design. We ex-
tracted three simple rules from the bugs that have lead to
some of the catastrophic failures, and developed a static

checker, Aspirator, capable of locating these bugs. Over
2% of the catactronhic faitluiree wonld have heen nre-

raises the questions of why these systems still experi-
ence failures and what can be done to increase their re-
siliency. To help answer these questions, we studied 198
randomly sampled, user-reported failures of five data-
intensive distributed systems that were designed to tol-
erate component failures and are widely used in produc-
tion environments. The specific systems we considered
were Cassandra, HBase, Hadoop Distributed File System
(HDES), Hadoop MapReduce, and Redis.

Our goal is to better understand the specific failure
manifestation sequences that occurred in these systems
in order to identify opportunities for improving their
availability and resiliency. Specifically, we want to bet-
ter understand how one or multiple errors! evolve into
component failures and how some of them eventually
evolve into service-wide catastrophic failures. Individual
elements of the failure sequence have previously been
studied in isolation, including root causes categoriza-
tions [33, 52, 50, 56], different types of causes includ-
ing misconfiguraitons [43, 66, 49], bugs [12, 41, 42, 51]
hardware faults [62], and the failure symptoms [33, 56],
and many of these studies have made significant impact
in that they led to tools capable of identifying many bugs
(e.g., [16, 39]). However, the entire manifestation se-
quence connecting them is far less well-understood.

For each failure considered, we carefully studied the
failure report, the discussion between users and develop-
ers, the logs and the code, and we manually reproduced
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Error Handling Code is simply empty or
only contains a Log statement

30% of
Catastrophic
Tailures

Error Handler aborts cluster on an overly
general exception

Error Handler contains comments like
FIXME or TODO

Simple Testing can Prevent Most Critical Failures



. 1 Short Counter txample

I /%

I  x Add two numbers together

I def Add (x: Int, y: Int):Int = {
' xx*y

' B

i

: Add(4, 3) Scala



T@IP D@ESN’T @AIRE AI@UT
Y@UIR WIPE SY
STEM \

E B e







98% of Jailures

Simple Testing can Prevent Most Critical Failures



Property Based
Testing




QuickCheck : ScalaCheck

Haskell Scala
& &
Erlang Java
languages with Quick Check Ports:

C, C++, Clojure, Common 1iap, cm, T+, G, Go, Javascript, Node.js, Objective-C, 0OCaml, Perl,
‘Prolog, PHP, ‘Python, R, (Rubg ‘Ruat, Scheme, Smalltalk, StandardM, Swift




org.scalacheck. _

smallInteger = Gen.choose(9,100)
propSmallInteger = Prop.forAll(smallInteger) { n =>
n > 0 & n <= 100

}

org.scalacheck. _

propReverseList = forAll { l:List[String] => l.reverse.reverse == 1 }



Fault Injection
Tntroducing faults into the system under test
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“Without explicitly forcing a system
to fail, it is unreasonable to have any
confidence it will operate correctly
in failure modes’

-‘The Verification of a ‘Distributed dystem
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‘Netflix dStimian flrmy

- Chaos Monkey: kills instances

- Latency Monkey: artificial latency
induced

- Chaos Gorilla: simulates outage
of entire availability zone.




Fault Injection Tool
that simulates
network
partitions in the
system under test




Fault Injection Tool
that simulates
network
partitions in the
system under test




CAUTION: Passing Tests
Does Not Ensure Correctness



‘Breaking your services on purpoae

Resilience Engineering: Learning to Embrace Failure



‘How to ‘Run a GameDay

1. Notify Engineering Teams that Failure is Coming

2. Induce Failures
3. Monitor Systems Under Test

4. Observing Only Team Monitors Recovery Processes
& Systems, Files Bugs

™ 5. Prioritize Bugs & Get Buy-In Across Teams |
'. s | 2 Il E N | I N ___ __pa | '- | k., :‘- | | ‘ L e .



“During a recent game day, we
tested failing over a Redis cluster by

running kill -9 on its primary
node, and ended up losing all
data in the cluster”

n Kelly Sommers ': ‘ ollowing

If there's anything to learn from this Redis
problem, even a simple kill -9 test needs to

happen more often in our industry.

31 35 LBENORBER =& 5

Game Day Exercises at Stripe: Learning from kill -9
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Lineage Driven Fault Injection

‘Cause I'm Strong Enough:
‘Reascning about Conasistency Choices in ‘Distributed Systems

lronFleet:
‘Proving ‘Practical ‘Distributed Systems Correct

Towards Property Based
Consistency Verification



’Cause I’m Strong Enough:
Reasoning about Consistency Choices in Distributed Systems

Alexey Gotsman
IMDEA Software Institute, Spain

Mahsa Najafzadeh

Sorbonne Universités, Inria,
UPMC Univ Paris 06, France

Abstract

Large-scale distributed systems often rely on replicated databases
that allow a programmer to request different data consistency guar-
antees for different operations, and thereby control their perfor-
mance. Using such databases is far from trivial: requesting stronger
consistency in too many places may hurt performance, and request-
ing it in too few places may violate correctness. To help program-
mers in this task, we propose the first proof rule for establishing
that a particular choice of consistency guarantees for various oper-
ations on a replicated database is enough to ensure the preservation
of a given data integrity invariant. Our rule is modular: it allows
reasoning about the behaviour of every operation separately under
some assumption on the behaviour of other operations. This leads
to simple reasoning, which we have automated in an SMT-based
tool. We present a nontrivial proof of soundness of our rule and
illustrate its use on several examples.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; FE3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

Keywords Replication; causal consistency; integrity invariants

1. Introduction
To achieve availability and scalability, many modern distributed

aurntacsttes oalur At wosmleamdmad 28 udoml o wileenle ostadenfnces oottt léeos )

Hongseok Yang
University of Oxford, UK

Carla Ferreira

NOVA LINCS, DI, FCT,
Universidade NOVA de Lisboa, Portugal

Marc Shapiro

Sorbonne Universités, Inria,
UPMC Univ Paris 06, France

use. Ideally, we would like replicated databases to provide strong
consistency, 1.e., 1o behave as if a single centralised node handles
all operations. However, achieving this ideal usually requires syn-
chronisation among replicas, which slows down the database and
even makes it unavailable if network connections between replicas
fail [2, 24].

For this reason, modern replicated databases often eschew syn-
chronisation completely; such databases are commonly dubbed
eventually consistent [47]. In these databases, a replica performs
an operation requested by a client locally without any synchronisa-
tion with other replicas and immediately returns to the client; the
effect of the operation is propagated to the other replicas only even-
tually. This may lead to anomalies—behaviours deviating from
strong consistency. One of them is illustrated in Figure 1(a). Here
Alice makes a post while connected to a replica r;, and Bob, also
connected to r;, sees the post and comments on it. After each of
the two operations, r; sends a message to the other replicas in the
system with the update performed by the user. If the messages with
the updates by Alice and Bob arrive to a replica r2 out of order,
then Carol, connected to 2, may end up seeing Bob’s comment,
but not Alice’s post it pertains to. The consistency model of a repli
cated database restricts the anomalies that it exhibits. For « i
the model of causal consistency [33], which we consider in ti.
per, disallows the anomaly in Figure 1(a), yet can be implemer
without any synchronisation. The model ensures that all replic:
the system see causally dependent events, such as the posts b/ Al-
ice and Bob. in the order in which thev happened. However. causal



@XPR("Int balance")
@XPR(value = "balance >= 0", type = XPR.Type.INVARIANT)

@Op (Account.Deposit.class)
@Op (Account.Debit.class
public class Account extends AnnotatedSchema {

@XPR(value { Int amount”, "Int balance” }, type = XPR.Type.ARGUME.
@XPR(value "amount >= 0", type = XPR.Type.PRECONDITION)
@XPR(value = "balance := balance + amount”, type = XPR.Type.EFFECT)
public static class Deposit extends AnnotatedOperation { }

@XPR(value { Int amount”, "Int balance” }, type = XPR.Type.ARGUME.

@XPR(value {" amount >= 0 "}, type = XPR.Type.PRECONDITION)
@XPR(value = "balance := balance - amount”, type = XPR.Type.EFFECT)
public static class Debit extends AnnotatedOperation { }

‘Cause Im Strong Enough: Reasoning About Consistency Choices in Distributed Systems



Conclusion

Use Formal Verification on
Critical Components

Unit Tests & Integration Tests find a
multitude of Errors

Increase Confidence via Property
Testing & Fault Injection




“Enjoy the ride, have fun, and &%
test your freaking code ‘
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