
The Verification of a
Distributed System

A Practitioner’s Guide to Increasing Confidence in System Correctness

Distributed Systems Engineer
Caitie McCaffrey

caitiem.com

@caitie

LESLIE LAMPORT

“A Distributed System is one in which
the failure of a computer you didn’t even

know existed can render your own
computer unusable”

Service ServiceService

We Are All
Building

Distributed
Systems

Twitter
Services

Overview
Formal Verification

Provably Correct Systems

Testing in the Wild
Increase Confidence in System Correctness

Research
A New Hope

References

Provably

Correct

Formal
Verification

Formal Specifications
Written description of what a system is supposed to do

TLA+ Coq

Hour Clock Specification
————————————— MODULE HourClock ————————————————
EXTENDS Naturals
VARIABLE hr
HCini == hr \in (1 .. 12)
HCnxt == hr’ = IF hr # 12 THEN hr + 1 ELSE 1
HC == HCini /\ [][HCnxt] _hr
——-
THEOREM HC => []HCini
===

Leslie Lamport, Specifying Systems

TLA+

Use of
Formal

Methods at
Amazon

Web Services

TLA+

“Formal Methods Have Been a Big Success”

S3 & 10+ Core Pieces of
Infrastructure Verified

2 Serious Bugs Found

Increased Confidence to make
Optimizations

Use of Formal Methods at Amazon Web Services

TLA+

“Formal methods deal with
models of systems, not the

systems themselves”
Use of Formal Methods at Amazon Web Services

Leslie Lamport, Specifying Systems

“Its a good idea to understand a system
before building it, so its a good idea to write

a specification of a system before
implementing it”

TLA+

Program Extraction

POPL

2016

“Our Verified
Implementation is

extracted to OCaml
& runs on real

networks”

Program Extraction

COQ

POPL

2016

“We have developed &
checked our framework
in Coq, extracted it to

OCaml, and built
executable stores”

Program Extraction

COQ

Distributed
Systems Testing

in the Wild

“Seems Pretty Legit”

Unit Tests
Testing of Individual Software

Components or Modules

Simple
Testing Can

Prevent
Most Critical

Failures

77% of Production failures
can be reproduced by a

Unit Test
Simple Testing can Prevent Most Critical Failures

Error Handling Code is simply empty or
only contains a Log statement

Error Handler aborts cluster on an overly
general exception

Error Handler contains comments like
FIXME or TODO

35% of
Catastrophic

Failures

Simple Testing can Prevent Most Critical Failures

Scala

Types
Are Not

Testing

A Short Counter Example

TCP Doesn’t Care About
Your Type System

Integration Tests
Testing of integrated modules to

verify combined functionality

Three nodes or
less can reproduce

98% of failures

Simple Testing can Prevent Most Critical Failures

Property Based
Testing

QuickCheck ScalaCheck
Haskell
Erlang

Scala
Java

& &

C, C++, Clojure, Common Lisp, Elm, F#, C#, Go, JavaScript, Node.js, Objective-C, OCaml, Perl,
Prolog, PHP, Python, R, Ruby, Rust, Scheme, Smalltalk, StandardML , Swift

Languages with Quick Check Ports:

ScalaCheck Examples

Fault Injection
Introducing faults into the system under test

-The Verification of a Distributed System

“Without explicitly forcing a system
to fail, it is unreasonable to have any
confidence it will operate correctly

in failure modes”

Netflix Simian Army
• Chaos Monkey: kills instances

• Latency Monkey: artificial latency
induced

• Chaos Gorilla: simulates outage
of entire availability zone.

Kyle has used this tool to show us that many of the
Distributed Systems we know seem stable
but are really just this. (cut to tire fire photo)

JEPSEN

credit: @aphyr

Fault Injection Tool
that simulates

network
partitions in the

system under test

Kyle has used this tool to show us that many of the
Distributed Systems we know seem stable
but are really just this. (cut to tire fire photo)

JEPSEN

credit: @aphyr

Fault Injection Tool
that simulates

network
partitions in the

system under test

CAUTION: Passing Tests
Does Not Ensure Correctness

GAME DAYS

Resilience Engineering: Learning to Embrace Failure

Breaking your services on purpose

How to Run a GameDay

1. Notify Engineering Teams that Failure is Coming

2. Induce Failures

3. Monitor Systems Under Test

4. Observing Only Team Monitors Recovery Processes
& Systems, Files Bugs

5. Prioritize Bugs & Get Buy-In Across Teams

Resilience Engineering: Learning to Embrace Failure

Game Day at Stripe
“During a recent game day, we

tested failing over a Redis cluster by
running kill -9 on its primary
node, and ended up losing all

data in the cluster”

Game Day Exercises at Stripe: Learning from `kill -9`

TESTING IN
PRODUCTION

Some thoughts on

Monitoring

Testing
is not

CANARIES
“Verification” in production

Verification
Wild

in the

Unit & Integration Tests

Property Based Testing

Fault Injection

Canaries

Research
Improving the Verification

of Distributed Systems

Lineage Driven Fault Injection

‘Cause I’m Strong Enough:
Reasoning about Consistency Choices in Distributed Systems

IronFleet:
Proving Practical Distributed Systems Correct

Towards Property Based
Consistency Verification

‘Cause I’m
Strong Enough

POPL

2016

‘Cause I’m Strong Enough: Reasoning About Consistency Choices in Distributed Systems

Conclusion
Use Formal Verification on

Critical Components

Unit Tests & Integration Tests find a
multitude of Errors

Increase Confidence via Property
Testing & Fault Injection

Camille Fournier

“Enjoy the ride, have fun, and
test your freaking code”

Thank You
Peter Alvaro

Kyle Kingsbury

Christopher
Meiklejohn

Alex Rasmussen

Ines Sombra

Nathan Taylor

Alvaro Videla

Questions

@caitie

http://github.com/CaitieM20/
TheVerificationOfDistributedSystem

Resources:

http://github.com/CaitieM20/TheVerificationOfDistributedSystem

