
Next Generation APIs
Powering Web, Mobile, TV

Manny Pelarinos 
Sr. Director of Distribution Platforms

2

1. Back Story

2. Next Gen API Platform

3. Real time consumer messaging…
at extreme scale

4. Q&A

QCON 2016
Agenda

3

• Manny Pelarinos - Sr Director of Distribution
Platforms

• Second time at QCon

• 9 year career with ESPN

• We’re hiring! - jobs.espncareers.com

About me

http://jobs.espncareers.com

Backstory

5

Headline:

• Bullet 1
• Bullet 2
• Bullet 3

How
• Personalization
• Globalization
• Product-first design

6

ESPN Facts and Figures

• > 400 Million API calls per day

• Peaks of over 20K RPS

• 1 Million WS Updates to Fans in
< 100MS

7

Product Galore So Many Screens

8

• Network latency and multiple requests are
bad

• Data plan restrictions and bandwidth

and Mobile
The Good, The Bad

9

v2v1v0

Focus on
Partners
Custom Feeds

REST
API Reuse
Product Agnostic
BIG APIs
Focus on
Partners

Best of both
worlds

API Evolution

10

Next Generation API
Platform

12

Say Hello to Binder

Core APIs Product APIs

13

Baseball Football … Sports CMS Audio/Video Fan Pref.

Core APIs
Business logic
Service tier
Lightweight
Data
References

Product APIs
Composition
Trimming
Custom DSL
Efficient

Baseball
Core APIs

…Sports
Core APIs

CMS Core
APIs

Audio/
Video

Fan Core
APIs

Caching and Routing

Football
Core APIs

Caching and Routing

ESPN.com
Product APIs

App Product
APIs

TV Product
APIs

Partner
Product APIs

Products &
Screens

Architecture

14

15

16

17

18

• Actual Fan preference data is small - IDs
• Content is big - News, Scores, Etc.
• Solution - Product API that conflates Fan

Preferences with sports data

Personalization

19

ESPN Now

• Many disparate sources of
content - CMS, Blogs,
Twitter, Facebook, etc.
• Search API alone doesn’t

get you all the details
• Solution - Product API that

conflates search and all
our various content APIs

20

• Caching

• Asynchronous

• DSL + Groovy

• Tools & Dashboards

Key Components

21

Caching

Local Core API Cache

(Countdown TTL)

Product APIs

Core
APIs

Database

Distributed
Cache

22

• Make requests in parallel –
Product API should only be
as slow as its slowest core
API call
• But, mixing synchronous

programming with
asynchronous is hard
• Enforce asynchronous all

the time but needed
convenience and rails
• Ported JS Promises to

Java (With RxJava)

Promises

23

Groovy

• Powerful Dynamic
Language

• Java++

• Performance issues
mitigated by caching

24

Tools and Dashboards - Trace

25

HAR (HTTP Archive)

26

Grafana and OpenTSDB

27

Technology

RxJav

Real Time Messaging

29

Massive Scale

• How do we enable real time data with REST
APIs?

• How can we scale to millions of concurrently
connected Fans?

Real-Time Data at Sports Scale

30

• FastCast is a real-time high-scale multicast
publishing platform that uses web sockets
as its underlying technology, allowing it to
work in both web and mobile spaces

• Client sets up a “Topic” via Admin Service

• Client publishes to Topic via Admin Service

• Fans subscribe to Topic via FastCast Core

• Fans receive messages as they are
published

Say Hello to FastCast

31

The Details

• Reliable core node replication handled thru Redis
• Built-in checkpoint/snapshot feature
• Uses generic JsonDiff/Patch + payload compression
• Client/server healthCheck + Better analytics captures
• AutoScaling in AWS with multi-region latency based routing

32

FastCast Architecture

API Delta
Capture

FastCast
Admin

TopicsLog

Replication

Traffic
Manager

Product APIs

Summary

34

What Did We Learn?

• One size does NOT fit all - Need
to separate Core from Product

• Caching is Key

• Operational Tools are awesome

• REST APIs + WebSockets =
COOL

35

• Error handling is complicated…

• What to do when circuit breaker
trips and nothing is in cache

• 50x vs. NULL

Playbook for Errors

36

• Binder as an in-memory application side
‘join engine’

• On going discussion around pre-expanding
more

NoSQL = Joins

