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• Manny Pelarinos - Sr Director of Distribution 
Platforms 

• Second time at QCon 

• 9 year career with ESPN 

• We’re hiring! - jobs.espncareers.com

About me

http://jobs.espncareers.com


Backstory
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Headline:

• Bullet 1
• Bullet 2
• Bullet 3

How
• Personalization
• Globalization
• Product-first design
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ESPN Facts and Figures

• > 400 Million API calls per day 

• Peaks of over 20K RPS 

• 1 Million WS Updates to Fans in 
< 100MS
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Product Galore So Many Screens



8

• Network latency and multiple requests are 
bad 

• Data plan restrictions and bandwidth

and Mobile
The Good, The Bad
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v2v1v0

Focus on 
Partners
Custom Feeds

REST
API Reuse
Product Agnostic
BIG APIs
Focus on 
Partners

Best of both 
worlds

API Evolution
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Next Generation API 
Platform
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Say Hello to Binder

Core APIs Product APIs
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Baseball Football … Sports CMS Audio/Video Fan Pref.

Core APIs
Business logic
Service tier
Lightweight
Data 
References

Product APIs
Composition
Trimming
Custom DSL
Efficient

Baseball 
Core APIs

…Sports 
Core APIs

CMS Core 
APIs

Audio/
Video

Fan Core 
APIs

Caching and Routing

Football 
Core APIs

Caching and Routing

ESPN.com 
Product APIs

App Product 
APIs

TV Product 
APIs

Partner 
Product APIs

Products & 
Screens

Architecture
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• Actual Fan preference data is small - IDs 
• Content is big - News, Scores, Etc. 
• Solution - Product API that conflates Fan 

Preferences with sports data

Personalization
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ESPN Now

• Many disparate sources of 
content - CMS, Blogs, 
Twitter, Facebook, etc. 
• Search API alone doesn’t 

get you all the details 
• Solution - Product API that 

conflates search and all 
our various content APIs
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• Caching 

• Asynchronous 

• DSL + Groovy 

• Tools & Dashboards

Key Components
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Caching

Local Core API Cache

(Countdown TTL)

Product APIs

Core 
APIs

Database

Distributed 
Cache
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• Make requests in parallel – 
Product API should only be 
as slow as its slowest core 
API call 
• But, mixing synchronous 

programming with 
asynchronous is hard 
• Enforce asynchronous all 

the time but needed 
convenience and rails 
• Ported JS Promises to 

Java (With RxJava)

Promises
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Groovy

• Powerful Dynamic 
Language  

• Java++ 

• Performance issues 
mitigated by caching
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Tools and Dashboards - Trace
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HAR (HTTP Archive)
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Grafana and OpenTSDB
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Technology

RxJav



Real Time Messaging
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Massive Scale 

• How do we enable real time data with REST 
APIs? 

• How can we scale to millions of concurrently 
connected Fans?

Real-Time Data at Sports Scale
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• FastCast is a real-time high-scale multicast 
publishing platform that uses web sockets 
as its underlying technology, allowing it to 
work in both web and mobile spaces 

• Client sets up a “Topic” via Admin Service 

• Client publishes to Topic via Admin Service 

• Fans subscribe to Topic via FastCast Core 

• Fans receive messages as they are 
published

Say Hello to FastCast
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The Details

• Reliable core node replication handled thru Redis 
• Built-in checkpoint/snapshot feature 
• Uses generic JsonDiff/Patch + payload compression 
• Client/server healthCheck + Better analytics captures 
• AutoScaling in AWS with multi-region latency based routing
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FastCast Architecture

API Delta 
Capture

FastCast 
Admin

TopicsLog

Replication

Traffic  
Manager

Product APIs



Summary



34

What Did We Learn?

• One size does NOT fit all - Need 
to separate Core from Product 

• Caching is Key 

• Operational Tools are awesome 

• REST APIs + WebSockets = 
COOL
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• Error handling is complicated… 

• What to do when circuit breaker 
trips and nothing is in cache 

• 50x vs. NULL

Playbook for Errors
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• Binder as an in-memory application side 
‘join engine’ 

• On going discussion around pre-expanding 
more

NoSQL = Joins




