
The Seven (More) DEADLY SINS OF Microservices

Daniel Bryant

@danielbryantuk

OpencRedo



Previously, AT QCON NYC 2015...

14/06/2016 @danielbryantuk
https://www.infoq.com/presentations/7-sins-microservices



The Seven (more) Deadly Sins of Microservices

1. LUST - Using the (Unevaluated) latest and greatest tech…

2. GLUTTONY - Communication lock-in

3. GREED - What'S Mine is mine (within the organisation)…

4. SLOTH - Getting lazy with NFRs

5. WRATH - Blowing up when bad things happen 

6. ENVY - The shared single domain (and data store) fallacy

7. PRIDE - testing in the world of transience

14/06/2016 @danielbryantuk



@danielbryantuk
• Chief Scientist at OpenCredo

ü Transforming organisations through technology and teams

ü Agile, Lean, Architecture, CI/CD, DevOps 

ü Microservices, cloud, Containers, Java, Go, Docker, Kubernetes

• London Java Community Associate

• Adopt OpenJDK and JSR

• InfoQ Editor, DZone MVB, VOXXED, O'Reilly

14/06/2016 @danielbryantuk



1. Lust - Using THE LATEST and Greatest Tech…
14/06/2016 @danielbryantuk



Previously...

• Microservices are not always a best fit

– Architectural skills, stage of business, Devops

• Evaluation (and documentation) are under-used skills

– Language, Frameworks, Middleware, data stores

14/06/2016 @danielbryantuk



Evaluation - are Microservices A good fit?
• Not understanding principles (Cargo-culting)

– Not built around business Functionality

– Mini-monoliths

• “our 'mode TWO' apps are Microservices”
– No transformation / migration plan

– SOE evolution limited by SOR

– Lipstick on the pig 

• No Well-defined DevOps / SRE / Ops
– Deployment/ops free-for-all

14/06/2016 @danielbryantuk



Evaluation - situational awareness

14/06/2016 @danielbryantuk

philcalcado.com/2015/09/08/how_we_ended_up_with_microservices.html

speakerdeck.com/acolyer/making-sense-of-it-all



Evaluation - start with Why

14/06/2016 @danielbryantuk



Evaluation - Fitness functions

• Microservices as an Evolutionary Architecture

– Neal Ford and Rebecca Parsons

• Great for evaluation and documentation

– Platforms / Language

– Middleware

– Data stores

14/06/2016 @danielbryantuk



Evaluation - The’Spine Model
• Effective conversations make for effective 

collaboration

• It's a TOOL Problem
– As a species, we have always been Tool users 

and makers. 

– We use _____ to get our work done

• People get stuck in a dilemma where equally 
plausible options are available 

• “Going up the Spine” breaks deadlock
http://spinemodel.info/explanation/introduction/



Determine the need for the tool
• PRACTICES before Tools

– Decide on the Practices that the tools are there to support

– We do _____ to create value

• PRINCIPLES before Practices
– Decide on the Principles to measure those Practices against.

– We leverage _____ to change the system

• VALUES before Principles

– Make as explicit as possible the Values at play in the system.

– We optimise for _____

• NEEDS before Values
– It all starts at Needs. Why does this system exist in the first 

place?

– We are here to satisfy _____
http://spinemodel.info/explanation/introduction/



2. GLUTTONY - Communication lock-in
14/06/2016 @danielbryantuk



Rpc - not the devil in disguise

• Don'T rule out RPC (e.g. grpc)

– Sometimes the contract (and speed) are beneficial

– Human readability of JSON is over-rated

• Stick to rest (JSON over HTTPS) on the front-end

– Principle of least surprise

– Best support in Javascript/mobile

14/06/2016 @danielbryantuk



The ESB is dead - long live the esb!

14/06/2016 @danielbryantuk



The ESB is dead - long live the esb!

14/06/2016 @danielbryantuk



The ESB is dead - long live the esb!

14/06/2016 @danielbryantuk

• Is this an ESB?

• Or an API gateway?



The ESB is dead - long live the API Gateway!

14/06/2016 @danielbryantuk

• Watch for the API Gateway morphing 
into an Enterprise service bus
– Loose coupling is vital

• But let me be clear...
– The API Gateway pattern is awesome

– Centralise cross-cutting concerns

– Prevent wheel-reinvention (plugins)

– Check out kong, apigee, AWS API Gateway, 
Mulesoft etc



ESB != Event Bus

14/06/2016 @danielbryantuk

www.infoq.com/news/2016/02/not-just-microservices www.youtube.com/watch?v=0pfghZxlFSg



3. GREED - What'S mine is mine... (within the organisation)…

14/06/2016 @danielbryantuk



Previously...

• Conway'S Law

• Microservices are about people, as much as they are tech

• Get your business ready

14/06/2016 @danielbryantuk



We hear this a lot...

“We’ve decided to reform our teams around squads, chapters and guilds”

• Beware of cargo-culting

– Repeat three times “We are not spotify”

• Understand the practices, principles, values etc

14/06/2016 @danielbryantuk



Empathy - The Hidden ingredient in Good software development

14/06/2016 @danielbryantuk

http://www.ustream.tv/recorded/86154111



4. SLOTH - Getting Lazy with NFRs
14/06/2016 @danielbryantuk



Getting lazy with non-Functional Requirements

“The driving technical requirements for a system should be identified early 

to ensure they are properly handled in subsequent design”

Aidan Casey

Guiding principles for evolutionary architecture

14/06/2016 @danielbryantuk



Getting lazy with non-Functional Requirements

• The 'ilities' Can be (often) be an afterthought

– Availability, Scalability, auditability, testability etc

• Agile/Lean: Delay decisions to the ‘last responsible moment’
– NewsFlash - Sometimes this is up-front

• It can be costly (or prohibitive) to adapt late in the project

– Microservices don'T make this easier (sometimes more difficult)

14/06/2016 @danielbryantuk



Bedtime reading

• Performance and Load testing 

– Gatling / jmeter

– Flood.io

• Security testing 

– OWASP ZAP

– Bdd-security

14/06/2016 @danielbryantuk



5. WRATH - Blowing up when bad things happen 
14/06/2016 @danielbryantuk



Previously - Bring in Michael Nygard (Or some monkeys)

14/06/2016 @danielbryantuk



Technical Pain point - Distributed transactions
• Don't 

– (where possible)

– Push transactional scope into single service

• Supervisor/Process Manager
– E.g. Erlang OTP, Akka, EIP

• SAGA pattern
– Workflows providing a path (fork) of 

compensating actions

14/06/2016 @OpenCredo



People Pain point - How does Devops fit into this?

• http://web.devopstopologies.com/

• @	matthewpskelton

• @beerops and @sigje

• Google SRE

14/06/2016 @danielbryantuk



Devops - define responsibilities

• Do you really want to build an 
entire microservices platform?

• Focus on what matters

– Ci/CD

– Mechanical sympathy

– Logging

– Monitoring

14/06/2016 @danielbryantuk



Devops - the 'fullstack engineer' myth

“I'M sorry, but if you'RE not designing the computer chips and 

writing the website, then I don'T wanna hear from you”

Charity Majors (@mipsytipsy), CraftConf 2016

http://www.ustream.tv/recorded/86181845

14/06/2016 @danielbryantuk



DevOps - Responsibilities

14/06/2016 @danielbryantuk



6. ENVY - The shared SINGLE domain (and Data Store) fallacy

14/06/2016 @danielbryantuk



Previously - One Model to Rule Them All...

• One model…
– Breaks encapsulation

– Introduces coupling

• Know your DDD
– Entities

– Value Objects

– Aggregates and Roots

14/06/2016 @danielbryantuk



Context mapping

14/06/2016 @danielbryantuk

www.infoq.com/articles/ddd-contextmapping

www.infoq.com/presentations/ddd-microservices-2016



Choose (and use) data stores appropriately
• RDBMS

– Valuable for structured data

• Cassandra is Awesome
– but don'T treat it like an RDBMS!

• Don'T build a graph with RDBMS
– Use neo4j, Titan etc

• Datagrids e.g. Hazelcast
– Caching, distributed processing

14/06/2016 @danielbryantuk



7. PRIDE - testing in the world of transience
14/06/2016 @danielbryantuk



Previously...

• Local verification

– Consumer-based contracts

• End-to-end

– BDD-style critical path

• Remember the test pyramid

14/06/2016 @danielbryantuk

martinfowler.com/articles/microservice-testing/



Service virtualisation / API simulation

• Virtualise request/response of services

– Unavailable

– Expensive to run

– Fragile/brittle

– Non-deterministic

– Cannot simulate failures

https://dzone.com/articles/continuously-delivering-soa

14/06/2016 @danielbryantuk



Service virtualisation

• Classics

– CA service virtualization

– Parasoft virtualize

– HPE service virtualization 

– IBM Test Virtualization server

• New kids on the block

– Hoverfly

– Wiremock

– VCR/Betamax

– Mountebank

– mirage

14/06/2016 @danielbryantuk



Hoverfly

• Lightweight Service virtualisation

– Open source (Apache 2.0)

– Go-based / single binary 

– Written by @Spectolabs

• Flexible API simulation

– HTTP / HTTPS

– More Protocols to follow?

14/06/2016 @danielbryantuk



14/06/2016 @danielbryantuk

• Middleware
• Remove	PII
• Rate	limit
• Add	headers

• Middleware
• Fault	injection
• Chaos	monkey



14/06/2016 @danielbryantuk



Hoverfly JUnit rule

14/06/2016 @danielbryantuk



Right, Let'S Wrap this up...

14/06/2016 @danielbryantuk



Avoid being a sinner...

• Strategy

• Principles/Preparation

• Responsibilities

• Defined and shared

• Understood and appropriate

• Clear and c0mmunicated

14/06/2016 @danielbryantuk



Strategy (@Swardley style)

14/06/2016 @danielbryantuk



Strategy (@Swardley style)

14/06/2016 @danielbryantuk



Strategy

14/06/2016 @danielbryantuk



Principles/Preparation - In the olden days

“Give me six hours to chop down a tree

and I will spend the first four sharpening the axe”

Abraham Lincoln

14/06/2016 @danielbryantuk



Principles/Preparation - What I See...

“Give me six hours to chop down a tree

and I will begin planning the construction of a large-scale lumber yard

And on The second day I will discover no-one knows how to use an axe

And on The third day I will buy a handsaw and begin sawing”

Me, attempting to be humourus

14/06/2016 @danielbryantuk



Principles / Preparation

14/06/2016 @danielbryantuk



Responsibilities

14/06/2016 @danielbryantuk



Responsibilities

• Define Responsibilities
– RACI / RASCI

• Architecture
– Super important in microservices

– Less ivory towers, more sim city

• Devops
– Not a free-for-all

– No fullstack heros

14/06/2016 @danielbryantuk



The Seven (more) Deadly Sins of Microservices

1. LUST - Using the (Unevaluated) latest and greatest tech…

2. GLUTTONY - Communication lock-in

3. GREED - What'S Mine is mine (within the organisation)…

4. SLOTH - Getting lazy with NFRs

5. WRATH - Blowing up when bad things happen (txns and ops)

6. ENVY - The shared single domain (and data store) fallacy

7. PRIDE - testing in the world of transience

14/06/2016 @danielbryantuk



The Seven (more) Deadly Sins of Microservices

1. LUST - Using the (Unevaluated) latest and greatest tech…

2. GLUTTONY - Communication Lock-in

3. GREED - What'S Mine is mine (within the organisation)…

4. SLOTH - Getting lazy with NFRs

5. WRATH - Blowing up when bad things happen (txns and ops)

6. ENVY - The shared single domain (and data store) fallacy

7. PRIDE - testing in the world of transience

14/06/2016 @danielbryantuk



(More) Bedtime reading

14/06/2016 @danielbryantuk



THANKS...

@danielbryantuk

daniel.bryant@opencredo.com

http://muservicesweekly.com/

(Credit to Tareq Abedrabbo for inspiration/guidance)

14/06/2016 @danielbryantuk


