

Building an A.I. Cloud

What We Learned from Prediction 10

Simon Chan

Sr. Director, Product Management, Salesforce Co-founder, PredictionIO PhD, University College London

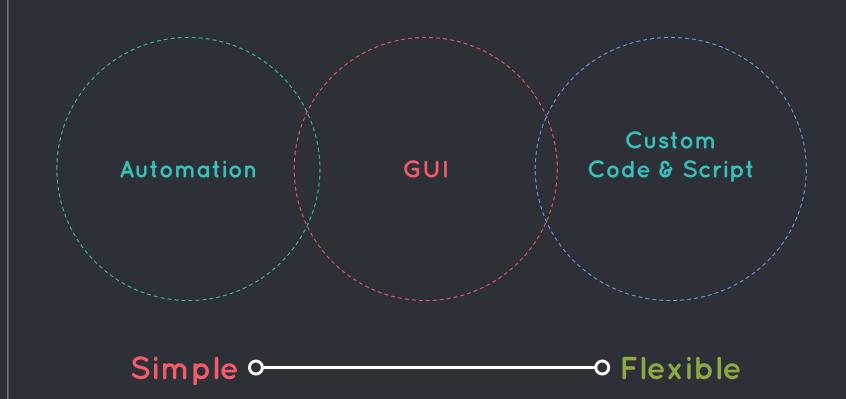
simon@salesforce.com

The A.I. Developer Platform Dilemma

Simple • Flexible

Every prediction problem is unique.

3 Approaches to Customize Prediction



10 KEY STEPS

to build-your-own A.I.

P.S. Choices = Complexity

One platform, build multiple apps. Here are 3 examples.

1. E-Commerce
Recommend
products

2. Subscription

Predict churn

3. Social Network
Detect spam

Let's Go Beyond Textbook Tutorial

```
// Example from Spark ML website
import org.apache.spark.ml.classification.LogisticRegression
// Load training data
val training = sqlCtx.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")
val lr = new LogisticRegression().setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8)
// Fit the model
val lrModel = lr.fit(training)
```

Define the Prediction Problem

Be clear about the goal

Define the Prediction Problem

Basic Ideas:

- What is the Business Goal?
 - Better user experience
 - Maximize revenue
 - Automate a manual task
 - Forecast future events
- What's the input query?
- What's the prediction output?
- What is a good prediction?
- What is a bad prediction?

2

Decide on the Presentation

It's (still) all about human perception

Decide on the Presentation

Mailing List and Social Network, for example, may tolerate false predictions differently

Actual

		NOT SPAM	SPAM
Predicted	NOT SPAM	True Negative	False Negative
	SPAM	False Positive	True Positive

Decide on the Presentation

Some UX/UI Choices:

- Toleration to Bad Prediction?
- Suggestive or Decisive?
- Prediction Explainability?
- Intelligence Visualization?
- Human Interactive?
- Score; Ranking; Comparison; Charts; Groups
- Feedback Interface
 - Explicit or Implicit

3

Import Free-form Data Source

Life is more complicated than MNIST and MovieLens datasets

Import Free-form Data Sources

- Some Types of Data:
 - User Attributes
 - Item (product/content) Attributes
 - Activities / Events

Estimate (guess) what you need.

Import Free-form Data Sources

- Some Ways to Transfer Data:
 - Transactional versus Batch
 - Batch Frequency
 - Full data or Changed Delta Only

Don't forget continuous data sanity checking

Construct Features & Labels from Data

Make it algorithm-friendly!

Construct Features & Labels from Data

Some Ways of Transformation:

- Qualitative to Numerical
- Normalize and Weight
- Aggregate Sum, Average?
- Time Range
- Missing Records

Label-specific:

- Delayed Feedback
- Implicit Assumptions
- Reliability of Explicit Opinion

Different algorithms may need different things

Construct Features & Labels from Data

Qualitative to Numerical

```
// Example from Spark ML website - TF-IDF
import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}
val sentenceData = sqlContext.createDataFrame(Seq(
(0, "Hi I heard about Spark"),
(0, "I wish Java could use case classes"),
(1, "Logistic regression models are neat")
)).toDF("label", "sentence")
val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
val wordsData = tokenizer.transform(sentenceData)
val hashingTF = new HashingTF()
 .setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(20)
val featurizedData = hashingTF.transform(wordsData)
val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")
val idfModel = idf.fit(featurizedData)
val rescaledData = idfModel.transform(featurizedData)
```

5 Set Evaluation Metrics

Measure things that matter

Some Challenges:

- How to Define an Offline Evaluation that Reflects Real Business Goal?
- Delayed Feedback (again)
- How to Present The Results to Everyone?
- How to Do Live A/B Test?

Clarify "Real-time"

The same word can mean different things

Different Needs:

- Batch Model Update, Batch Queries
- Batch Model Update, Real-time Queries
- Real-time Model Update, Real-time Queries

When to Train/Re-train for Batch?

7 Find the Right Model

The "cool" modeling part - algorithms and hyperparameters

Find the Right Model

Example of model hyperparameter selection

```
// Example from Spark ML website
// We use a ParamGridBuilder to construct a grid of parameters to search over.
val paramGrid = new ParamGridBuilder()
 .addGrid(hashingTF.numFeatures, Array(10, 100, 1000))
 .addGrid(lr.regParam, Array(0.1, 0.01)).build()
// Note that the evaluator here is a BinaryClassificationEvaluator and its default metric
// is areaUnderROC.
val cv = new CrossValidator()
 .setEstimator(pipeline).setEvaluator(new BinaryClassificationEvaluator)
 .setEstimatorParamMaps(paramGrid)
 .setNumFolds(2) // Use 3+ in practice
// Run cross-validation, and choose the best set of parameters.
val cvModel = cv.fit(training)
```


Some Typical Challenges:

- Classification, Regression, Recommendation or Something Else?
- Overfitting / Underfitting
- Cold-Start (New Users/Items)
- Data Size
- Noise

8

Serve Predictions

Time to Use the Result

Serve Predictions

Some Approaches:

- Real-time Scoring
- Batch Scoring

Real-time Business Logics/Filters is often added on top.

9

Collect Feedback for Improvement

Machine Learning is all about "Learning"

Some Mechanism:

- Explicit User Feedback
 - Allow users to correct, or express opinion on, prediction manually
- Implicit Feedback
 - Learn from subsequence effects of the previous predictions
 - Compare predicted results with the actual reality

10

Keep Monitoring & Be Crisis-Ready

Make sure things are still working

Some Ideas:

- Real-time Alert (email, slack, pagerduty)
- Daily Reports
- Possibly integrate with existing monitoring tools
- Ready for production rollback
- Version control

For both **prediction accuracy** and **production** issues.

Summary: Processes We Need to Simplify

Define the Prediction Problem

Decide on the Presentation

Construct Features & Labels from Data

o Clarify "Real-Time"

Find the Right Model

Serve Predictions

Collect Feedback for Improvement

Keep Monitoring & Be Crisis-Ready

The Future of A.I.

is the automation of A.I.

Thanks! Any Questions?

WE ARE HIRING.

simon@salesforce.com

@ simonchannet