
What they don’t tell you about µ-services…
Q C o n N Y – J u n e 2 0 1 6

Daniel Rolnick
C h i e f T e c h n o l o g y O f f i c e r

Daniel Rolnick
C h i e f T e c h n o l o g y O f f i c e r

daniel.rolnick@yodle.com

Story Time

September 2014

Story Time

June 2016

Story Time

Something’s gotta give

▶ Changing environments cause stress

▶ Existing processes need to be revisited

▶ Processes need to to be created

▶ New technology needs to be integrated

▶ Businesses are built on trade-offs

Evolution Requires Adaptation

Expected developmental needs

▶ Platform as a Service

▶ Service Discovery

▶ Testing

▶ Containerization

▶ Monitoring

Eyes Wide Open

Unexpected implications of micro-services

▶ Impact on data access

▶ Build and Deploy Tooling

▶ Source Repository Complexity

▶ Cross application monitoring

Expect the Unexpected

Bring on the complexity

Story Time

0
50

100
150
200
250

Yodle	Service Count

Data access
patterns

Independent Data Domains

▶ Isolated data ownership per micro-service

▶ Options: Physical Databases, Schemas, Polyglot

▶ Ideal state for new things but what about the old stuff

▶ Can’t get there in one move

Microservices Macroproblems

Baby Steps to Freedom

▶ Central data stores are leaky abstractions

Microservices Macroproblems

Baby Steps to Freedom

Microservices Macroproblems

▶ Central data stores are leaky abstractions

▶ Enforce data ownership

through access patterns

Baby Steps to Freedom

▶ Central data stores are leaky abstractions

▶ Enforce data ownership

through access patterns

▶ Façade for decoupling

Microservices Macroproblems

Baby Steps to Freedom

▶ Central data stores are leaky abstractions

▶ Enforce data ownership

through access patterns

▶ Façade for decoupling

▶ Multi-step process

Microservices Macroproblems

Shared Containers Simplify Things

Microservices Macroproblems

▶ Services in the same container reuse

connections

▶ Connection pooling goes away

▶ Base connection count starts

adding up

▶ You could always go to a minimum

idle of zero

▶ What could go wrong?

Microservices Macroproblems

0

50

100

150

200

250
Yodle	Service Count

External Connection Pooling

▶ Connection pooling outside of the container

▶ Add visibility while you’re at it

▶ Better logging, cleaner visualizations

Microservices Macroproblems

Microservices Macroproblems

Tooling for empowerment

▶ Server spin-up

▶ Schema and Account creation

▶ Ensure externalized your configurations

Microservices Macroproblems

Platform as
a Service

Static Configurations

▶ Every application deployed to a fixed set of hosts on a set of known ports

▶ Monitoring was done at a gross system synthetic level

▶ Only complete outages were easily detectable

▶ Manual restarts required

▶ PS-Watcher and Docker restart help but are not sufficient

▶ This was not going to scale

A Place for Everything and Everything…

Keeping services alive by hand is problematic

▶ Researched available PaaS Platforms available in late 2014

• Mesos / Marathon

• CoreOS

▶ What about:

• Kubernetes

• Swarm

• AWS Elastic Container Service

This Ain’t Gonna Scale

Mesos and Marathon

▶ Deploy applications to marathon

▶ Marathon decides what host and port to run applications on

▶ Health checks are built in to ensure application up-time

▶ Mesos ensures the applications run and are contained

Platform as a Service

Platform as a Service

0
50

100
150
200
250

Yodle	Service Count

Pace of Innovation Increases

Service
Discovery

Aware Apps vs. Smart Pipes

▶ Service discovery can be baked into

your application

Dynamic Topologies Require Service Discovery

Aware Apps vs. Smart Pipes

▶ Plumbing can take care of it for you

▶ Smart Pipes allows

• Easier path to polyglot ecosystem

• Decouple applications from

service discovery

▶ We chose the latter but we had to iterate a few times to get there

Dynamic Topologies Require Service Discovery

Curator already in place

▶ Already used zookeeper/curator for our thrift based macro-services

▶ Made our micro-services self register and do discovery via curator

▶ You can’t solve everything at once

▶ Not our desired end state

Use What You Know

Hipache by dotCloud

▶ URLs looked like https://svcb.services.prod.yodle.com

▶ Utilized dedicated routing servers

Service Discovery V2

Hipache by dotCloud

▶ Pros: Decoupled service discovery from applications

▶ Cons: Services had to be environment aware

Service Discovery V2

PaaS’s built-in routing layer

▶ Marathon has a built-in routing layer using haproxy

▶ Simple command to generate an haproxy config

▶ Basic listener (Qubit Bamboo) keep haproxy files up-to-date

▶ Hipache could have worked

Service Discovery V3

Discovery was simpler

Service Discovery V3 Continued

Discovery was simpler

▶ Service discovery is now fully externalized

▶ Iterate on routing and discovery independently

▶ Created tech debt for the applications

Service Discovery V3 Continued

Service Discovery V4

0
50

100
150
200
250

Yodle	Service Count

Scale Problems

Many to Many Problems

▶ As the number of slave nodes in our PaaS grew so did our problems

▶ Health checks from every host to every container

▶ Ensuring the HAproxy file was up-to-date

on all hosts was annoying

▶ Centralized onto a small cluster of routing boxes

Service Discovery V4

Testing

Regressions give comfort

▶ Monolithic releases are understandable

▶ We tested everything

▶ Everything works

Continuous Integration

Release code as it is written

Continuous Delivery Pipeline

Develop

Commit to
Branch

Continuous
Integration

Merge

Continuous
Delivery

Regressions take time

▶ Empower continuous delivery

▶ Broke apart our monolithic regression suite

▶ Same methodology for macro and micro-services

Continuous Integration

Enter the Canary

▶ Landscape is in flux

▶ If we test a subset of things how can

we be sure everything works?

▶ Canary Ensures
▶ Dependencies met
▶ Satisfying existing contracts
▶ Handle production load

Continuous Delivery Pipeline

Continuous Delivery Pipeline

▶ Special canary routing in our service discovery layer

▶ Test anywhere in the service mesh

▶ Discoverable tests using a /tests endpoint

▶ Monitor canary health in New Relic

▶ Promote to Canary Partial

Continuous Delivery Pipeline

▶ Receive partial production load

▶ Monitor canary health in New Relic

▶ Validate response codes

▶ Measure throughput

▶ Promote to general availability

Sentinel

Continuous Delivery Pipeline

Sentinel

Continuous Delivery Pipeline

Sentinel

Continuous Delivery Pipeline

Sentinel

Continuous Delivery Pipeline

Sentinel

▶ INSERT SCREENSHOTS OF SENTINEL

Continuous Delivery Pipeline

Sentinel

▶ INSERT SCREENSHOTS OF SENTINEL

Continuous Delivery Pipeline

Sentinel

▶ INSERT SCREENSHOTS OF SENTINEL

Continuous Delivery Pipeline

Containers

Standardization is required

▶ Polyglot environments buck standardization

▶ Micro-service environments increase complexity

▶ Operational complexity can grown unbounded

▶ Developers own the runtime

▶ Common runtime from an operator ’s standpoint

▶ Tooling provides consistent deployments

Containers Bring Simplicity

Hierarchical Container Images

▶ How do you roll out environmental changes when you have 200 different container

builds?

Containers Bring Simplicity

Containers make a mess

▶ Docker host machines were littered

▶ Docker registry is littered with old images

▶ Developed a tagging process

Containers Bring Simplicity

Monitoring

Legacy Monitoring not cutting it

▶ Designed for testing and monitoring infrastructure

▶ Needed application performance management

▶ Wanted something that would scale with us with little effort

Increased Complexity Increased Requirements

Graphite and Grafana

▶ Dropwizard metrics to report data

▶ Teams built custom dashboards

▶ Too much manual effort

▶ No alerting

Increased Complexity Increased Requirements

Enter the Hackathon

▶ New Relic Monitoring For Microservices

▶ Simple – just add an agent

▶ Detailed per application dashboards out of the box

▶ Single score to focus attention (Useful for initial canary implementation)

▶ Basic alerting

Increased Complexity Increased Requirements

100 Apps in 100 Days

▶ Made use of our base containers

▶ Rolled out monitoring to every application in the fleet

▶ Suddenly we had visibility everywhere.

▶ Some Limitations

• No good docker support (this is better now)

• Services graphs aren’t dynamically generated

Increased Complexity Increased Requirements

Finding root causes

▶ Hundreds of Dashboards

▶ Hundreds of Individual Service Nodes

▶ Finding root causes in complex service graphs is difficult

▶ Anomalies from individual service nodes difficult to detect

▶ Still looking for a good solution

Increased Complexity Increased Requirements

Source
Repository
Complexity

Source Code Management

▶ Organizational scheme to help think about it

▶ Hound to help with code searching

▶ Repo tool to help keep up-to-date

▶ Upgrading libraries is a challenge

Source Repository Complexity

Dependency Management

▶ INSERT IMAGE OF VANTAGE

Source Repository Complexity

Dependency Management

Source Repository Complexity

Dependency Management

Source Repository Complexity

Dependency Management

Source Repository Complexity

Build tooling

▶ Many build systems don’t directly allow scripting

▶ Bamboo definitely doesn’t

▶ Build tooling iterations are painful

▶ Managing Bamboo build and deploy plans at scale is hard

Source Repository Complexity

Existing Build Tooling

Build and Deploy Tooling

0
50

100
150
200
250

Yodle	Service Count

Directly to Marathon configurations in Bamboo

Build and Deploy Tooling

0
50

100
150
200
250

Yodle	Service Count

LaunchPad as an Abstraction Layer

Build and Deploy Tooling

0
50

100
150
200
250

Yodle	Service Count

Build and Deploy Tooling

Sentinel For Human Service Discovery

Source Repository Complexity

Sentinel For Human Service Discovery

Source Repository Complexity

Sentinel For Human Service Discovery

Source Repository Complexity

Conclusion

Even if you aren’t on the bleeding edge …

▶ Every environment is different

▶ Legacy Applications present unique challenges

▶ Different business requirements

▶ Different trade-offs

Plan for Challenges

Every Hurdle Was Worth It

Improved Agility

0
200
400
600
800

1000
1200
1400

Monthly	Deployments

We make it easy to grow and manage
profitable customer relationships
It’s success simplified!

