

Aysylu Greenberg
June 14, 2016

Distributed Systems in Practice,
in Theory

How I got into reading
papers as a

practitioner in industry

Computer Science
Research
In
Distributed Systems
Industry

Operating systems research

Operating systems research

Operating systems research

Concurrency

Operating systems research

Concurrency

Concurrency primitives:
mutex & semaphore

Operating systems research

Concurrency

Concurrency primitives:
mutex & semaphore

Processes execute at
different speeds

Time in distributed systems

https://www.flickr.com/photos/national_archives_of_norway/6263353228

https://www.flickr.com/photos/national_archives_of_norway/6263353228
https://www.flickr.com/photos/national_archives_of_norway/6263353228

Time in distributed systems

Time in distributed systems

Pipelining

1980

1980

Internet

1980

Internet

Distributed consensus

1980

Internet

Distributed consensus

1980

Internet

Distributed consensus

1980

Paxos

Internet

Distributed consensus

1980

Reconsider large systems

Reconsider large systems

Shared infrastructure

...

CS Research is Timeless

Inform decisions

Mitigate technical risk

* 2
2

Aysylu Greenberg

@aysylu22

Papers We Love NYC

Papers We Love SF

* 2
5

Aysylu Greenberg

@aysylu22

Today

● Staged Event-Driven Architecture

Today

● Staged Event-Driven Architecture
● Leases

Today

● Staged Event-Driven Architecture
● Leases
● Inaccurate Computations

Staged Event
Driven

Architecture
&

Deep
Pipelines

2001

Hardware to Data Pipelines

Hardware to Data Pipelines

https://en.wikipedia.org/wiki/Graphics_pipeline

https://en.wikipedia.org/wiki/Graphics_pipeline
https://en.wikipedia.org/wiki/Graphics_pipeline

Staged Event Driven Architecture

Staged Event Driven Architecture

+ -

Single-machine pipeline

generalizes to distributed pipelines

Staged Event Driven Architecture

Search Indexing Pipelines

Search Indexing Pipelines

Search Indexing Pipelines

Search Indexing Pipelines

Search Indexing Pipelines

Search Indexing Pipelines

Search Indexing Pipelines

Search Indexing Pipelines

Search Indexing Pipelines

+ -

Leases
as Heart Beat in

Distributed
Systems

1989

Leases

● Distributed locking

Leases

● Distributed locking
● Lease term tradeoffs

○ short

Leases

● Distributed locking
● Lease term tradeoffs

○ short vs long

Leases

● Distributed locking
● Lease term tradeoffs

○ short vs long
● Use of leases in modern applications

○ Leader election TTL (in etcd)

Leases

● Distributed locking
● Lease term tradeoffs

○ short vs long
● Use of leases in modern applications

○ Leader election TTL (in etcd)
○ Liveness detection

Leases in Build System:
Success Scenario

Build my project

Build
System

Build my project

Build
System

OK

Build my project

Build
System

OK

Waiting for the results

Build my project

Build
System

OK

Waiting for the results

Build is in progress

Build my project

Build
System

OK

Waiting for the results

Build is in progress

Waiting for the results

Build my project

Build
System

OK

Waiting for the results

Build is in progress

Waiting for the results

Build is finished

Leases in Build System:
Failure Scenario

Leases in Build System

Leases in Build System

Leases in Build System

Leases in Build System

Leases in Build System

Leases in Build System

Using etcd leases for heartbeat
$ curl http://server.com/v2/keys/foo -XPUT -d\

 value=bar -d ttl=300

{
 "action": "set",
 "node": {
 "createdIndex": 2,
 "expiration":"2016-06-14T16:15:00",
 "key": "/foo",
 "modifiedIndex": 2,
 "ttl": 300,
 "value": "bar"
 }
}

Using etcd leases for heartbeat
$ curl http://server.com/v2/keys/foo -XPUT -d \

 value=bar -d ttl=300

… 3 minutes later...

Using etcd leases for heartbeat
$ curl http://server.com/v2/keys/foo -XPUT -d \

 value=bar -d ttl=300

$ curl \

 http://server.com/v2/keys/foo?prevValue=bar \

 -XPUT -d ttl=300 -d refresh=true -d \

 prevExist=true

{
 "action": "update",
 "node": {
 "createdIndex": 2,
 "expiration":"2016-06-14T16:18:00",
 "key": "/foo",
 "modifiedIndex": 3,
 "ttl": 300,
 "value": "bar"
 }
 "prevNode": {...}
}

{
 "action": "update",
 "node": {
 "createdIndex": 2,
 "expiration":"2016-06-14T16:18:00",
 "key": "/foo",
 "modifiedIndex": 3,
 "ttl": 300,
 "value": "bar"
 }
 "prevNode": {...}
}

"prevNode": {
 "createdIndex": 2,
 "expiration":"2016-06-14T16:15:00",
 "key": "/foo",
 "modifiedIndex": 2,
 "ttl": 120,
 "value": "bar"
}

Leases for heartbeat:
How long should the lease term be?

Inaccurate Computations
&
Serving Search Results

From Accurate to "Good Enough"

[Trade off] Inaccuracy for Performance

[Trade off] Inaccuracy for Resilience

Reduce

Map

Input

Map

Input

Map

Input

Inaccuracy for Resilience

1. Task decomposition

Inaccuracy for Resilience

1. Task decomposition
2. Baseline for correctness

Inaccuracy for Resilience

1. Task decomposition
2. Baseline for correctness
3. Criticality Testing

Inaccuracy for Resilience

1. Task decomposition
2. Baseline for correctness
3. Criticality Testing
4. Distortion and timing models

Distortion Model

Timing Model

[In production]
Inaccuracy for Performance & Resilience

Jeff Dean "Building Software Systems at Google and Lessons Learned", Stanford, 2010

[Designing with]
Inaccuracy for Performance & Resilience

[Designing with]
Inaccuracy for Performance & Resilience

simplified implementation

focus on observabilityapplicable to
some problem
domains

[Designing with]
Inaccuracy for Performance & Resilience

fuzz testing

generative testing

simplified implementation

fault injection testing

focus on observabilityapplicable to
some problem
domains

References
● T. Wurthinger, C. Wimmer et al. "One VM to Rule Them

All"
● M. Rinard "Probabilistic Accuracy Bounds for Fault-

Tolerant Computations that Discard Tasks"
● F. Corbato, M. Daggett, R. Daley "An Experimental Time-

Sharing System"
● E. Dijkstra "Cooperating Sequential Processes"
● L. Lamport "Time, Clocks, and the Ordering of Events in a

Distributed System"
● http://blinkdb.org/

http://blinkdb.org/
http://blinkdb.org/

References
● B. Oki, B. Liskov "Viewstamped Replication: A New Primary Copy

Method to Support Highly-Available Distributed Systems"
● L. Lamport "The Part-Time Parliament"
● M. Welsh, D. Culler, E. Brewer "SEDA: An Architecture for Well-

Conditioned, Scalable Internet Services"
● C. Gray, D. Cheriton "Leases: An Efficient Fault-Tolerant

Mechanism for Distributed File Cache Consistency"
● S. Agarwal, B. Mozafari et al. "BlinkDB: Queries with Bounded

Errors and Bounded Response Times on Very Large Data"

Gratitude
Ines Sombra
David Greenberg
Karan Parikh
Matt Welsh
Erran Berger

Robust & scalable pipelines

Robust & scalable pipelines
Leases for sharing &

heartbeat

Robust & scalable pipelines
Leases for sharing &

heartbeat
Inaccuracy for resilience &

performance

Robust & scalable pipelines
Leases for sharing &

heartbeat
Inaccuracy for resilience &

performance

CS research is timeless:
use it to mitigate risk

Aysylu Greenberg
June 14, 2016

Distributed Systems in Practice,
in Theory

@aysylu22

