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Operating systems research

Concurrency

Concurrency primitives: 
mutex & semaphore

Processes execute at 
different speeds



Time in distributed systems
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Reconsider large systems



Reconsider large systems

Shared infrastructure

...



CS Research is Timeless

Inform decisions

Mitigate technical risk
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Today

● Staged Event-Driven Architecture
● Leases
● Inaccurate Computations



Staged Event 
Driven 

Architecture
&

Deep 
Pipelines

2001
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Hardware to Data Pipelines

https://en.wikipedia.org/wiki/Graphics_pipeline
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+ -



Single-machine pipeline

generalizes to distributed pipelines

Staged Event Driven Architecture
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Search Indexing Pipelines

+ -



Leases
as Heart Beat in 

Distributed 
Systems

1989
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Leases

● Distributed locking
● Lease term tradeoffs

○ short vs long
● Use of leases in modern applications

○ Leader election TTL (in etcd)
○ Liveness detection





Leases in Build System:
Success Scenario



Build my project

Build 
System



Build my project

Build 
System

OK



Build my project

Build 
System

OK

Waiting for the results



Build my project

Build 
System

OK

Waiting for the results

Build is in progress



Build my project

Build 
System

OK

Waiting for the results

Build is in progress

Waiting for the results



Build my project

Build 
System

OK

Waiting for the results

Build is in progress

Waiting for the results

Build is finished



Leases in Build System:
Failure Scenario
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Using etcd leases for heartbeat
$ curl http://server.com/v2/keys/foo -XPUT -d\

  value=bar -d ttl=300



{
    "action": "set",
    "node": {
        "createdIndex": 2,
        "expiration":"2016-06-14T16:15:00",
        "key": "/foo",
        "modifiedIndex": 2,
        "ttl": 300,
        "value": "bar"
    }
}



Using etcd leases for heartbeat
$ curl http://server.com/v2/keys/foo -XPUT -d \

  value=bar -d ttl=300

… 3 minutes later...



Using etcd leases for heartbeat
$ curl http://server.com/v2/keys/foo -XPUT -d \

  value=bar -d ttl=300

$ curl \

  http://server.com/v2/keys/foo?prevValue=bar \

  -XPUT -d ttl=300 -d refresh=true -d \

  prevExist=true



{
    "action": "update",
    "node": {
        "createdIndex": 2,
        "expiration":"2016-06-14T16:18:00",
        "key": "/foo",
        "modifiedIndex": 3,
        "ttl": 300,
        "value": "bar"
    }
    "prevNode": {...}
}



{
    "action": "update",
    "node": {
        "createdIndex": 2,
        "expiration":"2016-06-14T16:18:00",
        "key": "/foo",
        "modifiedIndex": 3,
        "ttl": 300,
        "value": "bar"
    }
    "prevNode": {...}
}

"prevNode": {
    "createdIndex": 2,
    "expiration":"2016-06-14T16:15:00",
    "key": "/foo",
    "modifiedIndex": 2,
    "ttl": 120,
    "value": "bar"
}



Leases for heartbeat:
How long should the lease term be?



Inaccurate Computations
&
Serving Search Results



From Accurate to "Good Enough"



[Trade off] Inaccuracy for Performance









[Trade off] Inaccuracy for Resilience
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Inaccuracy for Resilience

1. Task decomposition
2. Baseline for correctness
3. Criticality Testing













Inaccuracy for Resilience

1. Task decomposition
2. Baseline for correctness
3. Criticality Testing
4. Distortion and timing models



Distortion Model



Timing Model



[In production]
Inaccuracy for Performance & Resilience



Jeff Dean "Building Software Systems at Google and Lessons Learned", Stanford,  2010







[Designing with]
Inaccuracy for Performance & Resilience



[Designing with]
Inaccuracy for Performance & Resilience

simplified implementation

focus on observabilityapplicable to 
some problem 
domains



[Designing with]
Inaccuracy for Performance & Resilience

fuzz testing

generative testing

simplified implementation

fault injection testing

focus on observabilityapplicable to 
some problem 
domains
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performance

CS research is timeless:
use it to mitigate risk
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