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Abstract. Dynamic analysis is the analysis of the properties of a run-
ning program. In this paper, we explore two new dynamic analyses based
on program profiling:

— Frequency Spectrum Analysis. We show how analyzing the frequen-
cies of program entities in a single execution can help programmers
to decompose a program, identify related computations, and find
computations related to specific input and output characteristics of
a program.

— Coverage Concept Analysis. Concept analysis of test coverage data
computes dynamic analogs to static control flow relationships such
as domination, postdomination, and regions. Comparison of these
dynamically computed relationships to their static counterparts can
point to areas of code requiring more testing and can aid program-
mers in understanding how a program and its test sets relate to one
another.

1 Introduction

Dynamic analysis is the analysis of the properties of a running program. In
contrast to static analysis, which examines a program’s text to derive properties
that hold for all executions, dynamic analysis derives properties that hold for
one or more executions by examination of the running program (usually through
program instrumentation [14]). While dynamic analysis cannot prove that a
program satisfies a particular property, it can detect violations of properties as
well as provide useful information to programmers about the behavior of their
programs, as this paper will show.

The usefulness of dynamic analysis derives from two of its essential charac-
teristics:

— Precision of information: dynamic analysis typically involves instrumenting
a program to examine or record certain aspects of its run-time state. This
instrumentation can be tuned to collect precisely the information needed
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“Dynamic analysis 1s the
analysis of the properties
of a running program |...]
(usually through program
instrumentation).”
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classic use-cases

2Debugging a program crash or race condition
2lnput to understand a new codebase
2Analysis of obfuscated software or malware



WhO cares

2Huge gulf between what tools practitioners use In
Industry, and academic dynamic analysis work

2Many techniques shared with other cool areas
like OS virtualization and compiler theory

2Techniques have different performance tradeofts;
knowing the lay of the land will help you choose
the right tool for your problem



dynamic vs static analysis

#@Static analysis is a conservative approximation of
runtime behavior

*Programs are only partially known (dynamic linking;
user input)

2Imprecise: consider a program that typechecks but still
has a bug

#lLanguage specifications often assume a single thread
of execution (or, don't specify at all): “valid” programs
can still allow race conditions!



cant prove correctness

but can demonstrate tailure



today's topics

20mniscient Debugging and State Tracking
2Analyzing Concurrent Systems
2Areas of Future Work



for each topic...

2What open-source tooling exists?
2How does it work under the hood?
S\What contributions has academia made?



- /tmp gcc foo.cC



- /tmp gcc foo.c
= /tmp ./a.out
[1] 4233 segmentation fault ./a.out



- /tmp gcc foo.cC

= /tmp ./a.out

[1] 4233 segmentation fault ./a.out

- /tmp gcc -g foo.c

-> gdb ./a.out

GNU gdb (Ubuntu 7.7.1-Qubuntu5~14.04.2) 7.7.1

Copyright (C) 2014 Free Software Foundation, Inc.
(gdb) run



=* /tmp gCC T00.C

= /tmp ./a.out

[1] 4233 segmentation fault ./a.out

- /tmp gcc -g foo.c

-> gdb ./a.out

GNU gdb (Ubuntu 7.7.1-Qubuntu5~14.04.2) 7.7.1

Copyright (C) 2014 Free Software Foundation, Inc.
(gdb) run

Starting program: /tmp/a.out

Program received signal SIGSEGV, Segmentation fault.
Ox00000000004004fd 1n baz () at foo.c:5
5 *foo = 42;



S>tarting program: /tmp/a.out

Program received signal SIGSEGV, Segmentation fault.
0x00000000004004fd 1n baz () at foo.c:5

5 *foo = 42;
(gdb) bt

#0 0Ox000000000040041d
#1 0x0000000000400513
#2 0Ox0000000000400523
#3 0Ox000000000040053e
(gdb) 1nf loc

foo = Ox7

(gdb) |}

1n
1n
1n
1n

baz () at foo.c:5

bar () at foo.c:9

foo () at foo.c:13

main (argc=1l, argv=0x7fffffffe438) at foo.c:17
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s a highly trained academic researcher, I spend a lot of time trying

to advance the frontiers of human knowledge. However, as someone

who was born in the South, I secretly believe that true progress is
a fantasy, and that I need to prepare for the end times, and for the chickens
coming home to roost, and fast zombies, and slow zombies, and the polite
zombies who say “sir” and “ma’am” but then try to eat your brain to acquire
your skills. When the revolution comes, I need to be prepared; thus, in the
quiet moments, when I'm not producing incredible scientific breakthroughs,
I think about what I'll do when the weather forecast inevitably becomes
RIVERS OF BLOOD ALL DAY EVERY DAY. The main thing that I ponder is
who will be in my gang, because the likelihood of post-apocalyptic survival
is directly related to the size and quality of your rag-tag group of associates.

There are some obvious people who I'll need to recruit: a locksmith (to open
doors); a demolitions expert (for when the locksmith has run out of ideas);
and a person who can procure, train, and then throw snakes at my enemies
(because, in a world without hope, snake throwing is a reasonable way to
resolve disputes). All of these people will play a role in my ultimate success
as a dystopian warlord philosopher. However, the most important person in
my gang will be a systems programmer. A person who can debug a device
driver or a distributed system is a person who can be trusted in a Hobbesian
nightmare of breathtaking scope; a systems programmer has seen the terrors
of the world and understood the intrinsic horror of existence. The systems
programmer has written drivers for buggy devices whose firmware was
implemented by a drunken child or a sober goldfish. The systems program-
mer has traced a network problem across eight machines, three time zones,
and a brief diversion into Amish country, where the problem was transmitted
in the front left hoof of a mule named Deliverance. The systems program-
mer has read the kernel source, to better understand the deep ways of the
universe, and the systems programmer has seen the comment in the sched-
uler that says “DOES THIS WORK LOL,” and the systems programmer has
wept instead of LOLed, and the systems programmer has submitted a kernel
patch to restore balance to The Force and fix the priority inversion that was
causing MySQL to hang. A systems programmer will know what to do when
society breaks down, because the systems programmer already lives in a

world without law.

Listen: I'm not saying that other kinds of computer people

are useless. I believe (but cannot prove) that PHP developers
have souls. I thinkit's great that database people keep trying
to improve select-from-where, even though the only queries
that cannot be expressed using select-from-where are inap-
propriate limericks from “The Canterbury Tales.” In some
way that I don’t yet understand, I'm glad that theorists are
investigating the equivalence between five-dimensional Tur-
ing machines and Edward Scissorhands. In most situations,
GUI designers should not be forced to fight each other with
tridents and nets as I yell “THERE ARE NO MODAL DIA-
LOGSIN SPARTA.” I am like the Statue of Liberty: I accept
everyone, even the wretched and the huddled and people who
enjoy Haskell. But when things get tough, I need mission-crit-
ical people; I need a person who can wear night-vision goggles
and descend from a helicopter on ropes and do classified
things to protect my freedom while country music plays in the
background. A systems person can do that. I can realistically
give a kernel hacker a nickname like “Diamondback” or “Zeus
Hammer.” In contrast, no one has ever said, “These semi-
transparent icons are really semi-transparent! IS THIS THE

using chewing tobacco. As a systems hacker, you must be pre-
pared to do savage things, unspeakable things, to kill runaway
threads with your bare hands, to write directly to network
ports using telnet and an old copy of an RFC that you found in
the Vatican. When you debug systems code, there are no high-
level debates about font choices and the best kind of turquoise,
because thisis the Old Testament, an angry and monochro-
matic world, and it doesn’t matter whether your Arial is Bold
or Condensed when people are covered in boils and pestilence
and Egyptian pharaoh oppression. HCI people discover bugs
by receiving a concerned email from their therapist. Systems
people discover bugs by waking up and discovering that their
first-born children are missing and “ETIMEDOUT ” has been
written in blood on the wall.

What is despair? I have known it—hear my song. Despairis
when you're debugging a kernel driver and you look at a mem-
ory dump and you see that a pointer has a value of 7. THERE IS
NO HARDWARE ARCHITECTURE THAT IS ALIGNED ON
7. Furthermore, 7 IS TOO SMALL AND ONLY EVIL CODE
WOULD TRY TO ACCESS SMALL NUMBER MEMORY.
Migalicned semall-number memorv accesses have stolen

login Nov 2013

“Despair 1s when you're
debugging a kernel driver and
you look at a memory dump and
you see that a pointer has a value
of 7. THERE IS NO
HARDWARE ARCHITECTURE
THAT IS ALIGNED ON 7.
Furthermore, 7 IS TOO SMALL
AND ONLY EVIL CODE WOULD
TRY TO ACCESS SMALL
NUMBER MEMORY. ”



(gdb) run

Starting program: /tmp/a.out

Program received signal SIGSEGV, Segmentation fault.
Ox00000000004004fd 1n baz () at foo.c:5

5 *foo = 42;
(gdb) bt

#0 0x000000000040041d
#1 0x0000000000400513
#2 0Ox0000000000400523
#3 0Ox000000000040053e
(gdb) 1nf loc

foo = Ox7

(gdb)

1n
1n
1n
1n

baz () at foo.c:5
bar () at foo.c:9
foo () at foo.c:13
main (argc=1l, argv=0x7fffffffe438)
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10

11

12

int 1

1++;

int j

8 void bar() {

9
10
11
12

=7:

int 1 = 7;
1++;
int =1 - 3;

1=1+ 733

* movl

$0x7,-0x8(%rbp)

$0x1,-0x8(%rbp)

-0x8(%rbp) ,%eax
$0x3,%eax
%eax, -0x4(%rbp)

-0x4(%rbp) ,%eax
%eax,-0x8(%rbp)



line 9 ' line 10
old i: N/A ' old i: 7
new 1: 8

) line 11 ) line 12
old j: N/A old i: 8

4‘-'new J: 5 <+

new 1: 7/ new jJ: 13

9 int 1 = 7;
* movl  $0x7,-0x8(%rbp)
10 1++;
$0x1,-0x8(%rbp)
11 int J =1 - 3;
mov -Ox8(%rbp) ,%eax
$0x3,%eax
%eax ,-0x4(%rbp)
12 1=1+ 3;

mov -0x4(%rbp) ,%eax
—> add %eax , -0x8(%rbp)



68 /* These are the core structs of the process record functionality.

69
70
/1
72
/3
4
/5
76
T4

A record_full_entry is a record of the value change of a register
("record_full_reg") or a part of memory ("record_full_mem"). And each
instruction must have a struct record_full_entry ("record_full_end")
that indicates that this is the last struct record_full_entry of this
instruction.

Each struct record_full_entry is linked to "record_full_list" by "prev"
and "next" pointers. */

141 struct record_full_entry

142 {

143
144
145
146
147
148
149
150
151
152
153
154

155 };

struct record_full_entry *prev;
struct record_full_entry *next;
enum record_full_type type;
union
{
/* reg */
struct record_full_reg_entry reg;
/* mem */
struct record_full_mem_entry mem;
/* end */

struct record_full_end_entry end; gdb/record-full.c
}ou;



- /tmp gdb ./a.out
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Abstract:

Traditional debugging and stepping execution trace are well-accepted techniques
to understand deep internals about a program. However in many cases navigating
the stack trace is not enough to find bugs, since the cause of a bug is often not in
the stack trace anymore and old state is lost, so out of reach from the debugger. In
this paper, we present the design and implementation of a backward-in-time debugger
for a dynamic language, i.e., a debugger that allows one to navigate back the history
of the application. We present the design and implementation of a backward-in-time
debugger called UNSTUCK and show our solution to key implementation challenges.

1 Introduction

Debuggers offer the ability to stop a program at a chosen place, either due to an error or
an explicit request (breakpoint). They provide the current states of the involved objects
together with a stack trace. However, while stepping through the code 1s a powerful tech-
nique to get a deep understanding of a certain functionality [DDNO2], in many cases this
information 1s not enough to find bugs. The programmer 1s often forced to build new hy-
potheses about the possible cause of the bugs, set new breakpoints and restart the program
to find the source of the problem. Often several iterations are necessary and 1t may be
difficult to recreate the exact same context [LHS99].

The questions a programmer has are often: “where was this variable set?”, “why is this
object reference nil?” or “what was the previous state of that object?"”. A static debugger
cannot answer these questions, since it has only access to the current execution stack.
There 1s no possibility to backtrack the state of an object or to find out why especially this
object was passed to a method. The Omniscient Debugger 1s a first attempt to answer these
problems [Lew03], however it 1s limited to java and instrumentation 1s done at bytecode
load time.

To understand the challenges faced by building a backward in time debugger, i.e., a de-
bugger that allows one to query the state history of a program, we developed a backward



£} GitHub, Inc. [US] https://github.com/fastly/librip

README.md

librip

Librip is a minimal-overhead API for instruction-level tracing in highly concurrent software. It is released under the Apache

2.0 license.

Impetus

Software with many thousands of threads and / or coroutines suffers from lack of run-time and post-mortem visibility with
debugging tools. When many thousands of threads are present in a software system, it may be impossible to attach a
debugger to an apparently stuck process. With many thousands of coroutines, even with a debugger, it can be difficult to
even find a stuck coroutine on myriad scheduling lists -- especially if it is erroneously waiting for data in the kernel!

This library attempts to solve these problems through an API that is reasonably efficient in terms of both CPU and memory
requirements -- enough so that traces can be take in production.

Design

As the name suggests, this library provides an interface for snapshots of the instruction pointer. These snapshots are stored
in a per-thread ring buffer, and contain a packed counter / function address. (Additional interfaces allow registration for
coroutines, but require additional runtime support.)

Currently, only Linux on amd64 architectures is supported. Patches for other platforms, operating systems, and compilers

are more than welcome.
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Debugging operating systems with time-traveling virtual machines

Samuel T. King, George W. Dunlap, and Peter M. Chen
University of Michigan

Abstract

Opecrating systems are difficult to debug with traditional
cyclic debugging. They are non-deterministic: they run
for long periods of time; they interact directly with hard-
ware devices; and their state is casily perturbed by the act
of debugging. This paper describes a time-traveling vir-
tual machine that overcomes many of the difficulties as-
sociated with debugging operating systems. Time travel
cnables a programmer to navigate backward and forward
arbitrarily through the execution history of a particular
run and to replay arbitrary segments of the past execu-
tion. We integrate time travel into a gencral-purpose de-
bugger to enable a programmer to debug an OS in re-
verse, implementing commands such as reverse break-
point, reverse watchpoint, and reverse single step. The
space and time overheads needed to support time travel
are reasonable for debugging, and movements in time are
fast enough to support interactive debugging. We demon-
stratc the value of our time-traveling virtual machine by
using it to understand and fix several OS bugs that are
difficult to find with standard debugging tools. Reverse
debugging is especially helpful in finding bugs that are
fragile due to non-determinism, bugs in device drivers,
bugs that require long runs to trigger, bugs that corrupt
the stack, and bugs that are detected after the relevant
stack frame is popped.

1 Introduction

Computer programmers are all-too-familiar with the task
of debugging complex software through a combination
of detective work, guesswork, and systematic scarch.
Tracking down a bug generally starts with running a pro-
gram until an error in the program manifests as a fault.
The programmer' then secks to start from the fault (the
manifestation of the crror) and work backward to the
causc of the fault (the programming ermror itself). Cyclic
debugging is the classic way to work backward toward
the error. In cyclic debugging, a programmer uscs a de-
bugger or output statements to examine the state of the
program at a given point in its execution. Armed with

In this paper, “programeser™ refers 10 the person debugging the sys-
tem, and “debogger refers o the programmung ool (2.8, 92b) used

by the programmer W examane and control the peogram

this information, the programmer then re-runs the pro-
gram, stops it at an carlier point in its execution history,
examines the state at this point, then iterates.

Unfortunately, this classic approach to debugging is
difficult to apply when debugging operating systems.
Many aspects of operating systems make them difficult
to debug: they are non-deterministic; they run for long
periods of time; the act of debugging may perturb their
state; and they interact directly with hardware devices.

First, operating systems arc non-deterministic. Their
exccution is affected by non-deterministic events such as
the interleaving of multiple threads, interrupts, user in-
put, network input, and the perturbations of state caused
by the programmer who is debugging the system. This
non-determinism makes cyclic debugging infeasible be-
cause the programmer cannot re-run the system to exam-
inc the state at an carlier point.

Second, operating systems run for long periods of
time, such as weeks, months, or even years. Re-running
the system in cyclic debugging would thus be infeasible
even if the OS were completely deterministic.

Third, the act of debugging may perturb the state of
the operating system. The converse is also true: a mis-
behaving operating system may corrupt the state of the
debugger. These interactions are possible because the
operating system is traditionally the lowest level of soft-
ware on a computer, so the debugger's code and data is
not isolated from the OS (unless the debugger uses spe-
cialized hardware such as an in-circuit emulator). Even
remote kemel debuggers depend on some basic function-
ality in the debugged OS, such as rcading and writing
memory locations, setting and handling breakpoints, and
communicating with the remote debugger {(c.g., through
the serial line). Using this basic functionality may be im-
possible on a sick OS. A debugger also needs assistance
from the OS to access hardware devices, and this func-
tionality may not work on a sick OS.

Finally, operating systems interact directly with hard-
ware devices. Devices are sources of non-determinism
that hinder cyclic debugging; they retum data and gen-
crate interrupts that may change between runs. Devices
may also fail due to timing dependencies if a program-
mer pauses during a debugging session.

In this paper, we describe how to use time-rraveling
virtual machines to overcome many of the difficultics as-

“...operating systems run
for long periods of time,
such as weeks, months, or
even years.”
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Opcrating systems are difficult to debug with traditional
cyclic debugging. They are non-deterministic: they run
for long periods of time; they interact directly with hard-
ware devices; and their state is casily perturbed by the act
of debugging. This paper describes a time-traveling vir-
tual machine that overcomes many of the difficultics as-
sociated with debugging operating systems. Time travel
cnables a programmer 1o navigate backward and forward
arbitrarily through the execution history of a particular
run and to replay arbitrary segments of the past execu-
tion. We integrate time travel into a gencral-purpose de-
bugger to enable a programmer to debug an OS in re-
verse, implementing commands such as reverse break-
point, reverse watchpoint, and reverse single step. The
space and time overheads needed to support time travel
are reasonable for debugging, and movements in time are
fast enough to support interactive debugging. We demon-
stratc the value of our time-traveling virtual machine by
using it to understand and fix several OS bugs that are
difficult to find with standard debugging tools. Reverse
debugging is especially helpful in finding bugs that are
fragile due to non-determinism, bugs in device drivers,
bugs that require long runs to trigger, bugs that corrupt
the stack, and bugs that are detected after the relevant
stack frame is popped.

1 Introduction

Computer programmers are all-too-familiar with the task
of debugging complex software through a combination
of detective work, guesswork, and systematic scarch.
Tracking down a bug generally starts with running a pro-
gram until an error in the program manifests as a fault.

The programmer' then secks to start from the fault (the
manifestation of the error) and work backward to the

cause of the fault (the programming crror itself). Cyclic
debugging is the classic way to work backward toward
the error. In cyclic debugging, a programmer uscs a de-
bugger or output statements to examine the state of the
program at a given point in its execution. Armed with

In this paper, “programenser™ refers 10 the person delugging the sys-
tem, and “debogger” refers to the programming ool (2.8, 9<b) used
by the programmer W examane and cootzol the program

gram, stops it at an carlier point in its execution history,
examines the state at this point, then iterates.

Unfortunately, this classic approach to debugging is
difficult to apply when debugging operating systems.
Many aspects of operating systems make them difficult
to debug: they are non-deterministic; they run for long
periods of time; the act of debugging may perturb their
state; and they interact directly with hardware devices.

First, operating systems arc non-deterministic. Their
exccution is affected by non-deterministic events such as
the interleaving of multiple threads, interrupts, user in-
put, network input, and the perturbations of state caused
by the programmer who is debugging the system. This
non-determinism makes cyclic debugging infeasible be-
cause the programmer cannot re-run the system to exam-
ine the state at an carlier point.

Scecond, operating systems run for long periods of
time, such as weeks, months, or even years. Re-running
the system in cyclic debugging would thus be infeasible
even if the OS were completely deterministic.,

Third, the act of debugging may perturb the state of
the operating system. The converse is also true: a mis-
behaving operating system may corrupt the state of the
debugger. These interactions are possible because the
operating system is traditionally the lowest level of soft-
ware on a computer, so the debugger's code and data is
not isolated from the OS (unless the debugger uses spe-
cialized hardware such as an in-circuit emulator). Even
remote kemel debuggers depend on some basic function-
ality in the debugged OS, such as rcading and writing
memory locations, setting and handling breakpoints, and
communicating with the remote debugger {(c.g., through
the serial line). Using this basic functionality may be im-
possible on a sick OS. A debugger also needs assistance
from the OS to access hardware devices, and this func-
tionality may not work on a sick OS.

Finally, operating systems interact directly with hard-
ware devices. Devices are sources of non-determinism
that hinder cyclic debugging; they retum data and gen-
crate interrupts that may change between runs. Devices
may also fail due to timing dependencies if a program-
mer pauses during a debugging session.

In this paper, we describe how to use time-rraveling
virtual machines to overcome many of the difficultics as-

A

A

B

D

E

E

redo undo

log

log



King et al. Debugging Operating Systems

Usenix ‘05

with Time-Traveling Virtual Machines

3 Time-traveling virtual machines

A time-traveling virtual machine should have two capa-
bilities. First, it should be able to reconstruct the com-
plete state of the virtual machine at any point in a run,
where a run is defined as the time from when the virtual
machine was powered on to the last instruction it exe-
cuted. Second, it should be able to start from any point
in a run and from that point replay the same instruction
stream that was executed during the original run from
that point. This section describes how TTVM achieves
these capabilities through a combination of logging, re-
play, and checkpointing.

3.1 Logging and replaying a VM

The foundational capability in TTVM is the ability to re-
play a run from a given point in a way that matches the
original run instruction for instruction. Replay causes the
virtual machine to transition through the same states as
it went through during the original run; hence replay en-
ables one to reconstruct the complete state of the virtual
machine at any point in the run. TTVM uses the ReVirt
logging/replay system to provide this capability [9]. This
section briefly summarizes how ReVirt logs and replays
the execution of a virtual machine.

A virtual machine can be replayed by starting
from a checkpoint, then replaying all sources of non-
determinism [5, 9]. For UML, the sources of non-
determinism are external input from the network, key-
board, and real-time clock and the timing of virtual inter-
rupts. The VMM replays network and keyboard input by
logging the calls that read these devices during the origi-
nal run and regenerating the same data during the replay
run. Likewise, we configure the CPU to cause reads of
the real-time clock to trap to the VMM, where they can
be logged or regenerated.

To replay a virtual interrupt, ReVirt logs the instruc-
tion in the run at which it was delivered and re-delivers
the interrupt at this instruction during replay. This point
is identified uniquely by the number of branches since
the start of the run and the address of the interrupted in-
struction [19]. ReVirt uses a performance counter on the
Intel Pentium 4 CPU to count the number of branches
during logging, and it uses the same performance counter
and instruction breakpoints to stop at the interrupted in-
struction during replay. Replaying interrupts enables
ReVirt to replay the scheduling order of multi-threaded
guest operating systems and applications, as long as the
VMM exports the abstraction of a uniprocessor virtual
machine [22]. Researchers are investigating ways to sup-
port replay on multiprocessors [29].

3.2 Host device drivers in the guest OS

In general, VMMs export a limited set of virtual devices.
Some VMMs export virtual devices that exist in hard-
ware (e.g., VMware Workstation exports an emulated
AMD Lance Ethemet card); others (like UML) export
virtual devices that have no hardware equivalent. Export-
ing a limited set of virtual devices to the guest OS is usu-
ally considered a benefit of virtual-machine systems, be-
cause it frees guest OSs from needing device drivers for
myriad host devices [26]. However, when using virtual
machines to debug operating systems, the limited set of
virtual devices prevents programmers from using and de-
bugging drivers for real devices; programmers can only
debug the architecture-independent portion of the guest
OS. There are two ways to address this limitation and en-
able the programmer to run and debug real device drivers
in a guest OS. With both strategies, real device drivers
can be included in the guest OS without being modified
or re-compiled.

The first way to run a real device driver in the guest
OS is for the VMM to provide a software emulator for
that device. The device driver issues the normal set of
I/O instructions: IN/OUT instructions, memory-mapped
/O, DMA commands, and interrupts. The VMM traps
these privileged instructions and forwards them to/from
the software device emulator. With this strategy, ReVirt
can log and replay device driver code in the same way it
logs and replays the rest of the guest OS. If one runs the
VMM’s software device emulator above ReVirt's log-
ging system (and above the checkpoint system described
in Section 3.3), ReVirt will guide the emulator and device
driver code through the same instruction sequence during
replay as they executed during logging. While this first
strategy fits in well with the existing ReVirt system, it
only works if one has an accurate software emulator for
the device whose driver one wishes to debug.

We modified UML to provide a second way to run real
device drivers in the guest OS, which works even when
no software emulator exists for the device of interest.
With this strategy, the VMM traps and forwards the priv-
ileged I/O instructions and DMA requests issued by the
guest OS device driver to the actual hardware. The pro-
grammer specifies which devices UML can access, and
the VMM enforces the proper I/O port space and mem-
ory access for the device.

This second strategy requires extensions to enable Re-
Virt to log and replay the execution of the device driver.
Whereas the first strategy placed the device emulator
above the ReVirt logging layer, the second strategy for-
wards driver actions to the actual hardware device. Be-
cause this device may not be deterministic, ReVirt must
log any information sent from the device to the driver.
Specifically, ReVirt must log and replay the data returned

“Replay causes the virtual
machine to transition
through the same states as
it went through during the
original run”

“A VM can be replayed by
starting from a checkpoint,
then replaying [...] the
network, keyboard, clock,
and timing of interrupts”



Peterministic
Replay
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with Time-Traveling Virtual Machines

6]. User-Mode Linux simulates interrupes and preemp-
tions with asynchronous signals, and prior reverse de-
buggers are not able to replay such events. In addition,
most reverse debuggers implement time travel by logging
all changes to variables [30, 1, 21, 6], and this approach
logs too much data when debugging long-running sys-
tems such as an OS. Finally, some systems work at the
language level [27], and this prevents them from work-
ing with operating systems in a different language or with
application binarics.

Rescarchers have worked to replay non-deterministic
programs through various approaches. The cevents of
different threads can be replayed at different levels, in-
cluding logging accesses to shared objects [16], logging
the scheduling order of multi-threaded programs on a
uniprocessor [22], or logging physical memory accesses
in hardware [2]. Other rescarchers have worked to opti-
mize the amount of data logged [21)].

Virtual-machine replay has been used for non-
debugging purposes. Hypervisor used virtual-machine
replay to synchronize the state of a backup machine to
provide fault tolerance [5]. ReVirt used virtual-machine
replay to enable detailed intrusion analysis [9]. Our
work applies virtual-machine replay to achicve a new
capability, which is reverse debugging of operating sys-
tems. TTVM also supports additional features over prior
virtual-machine replay systems. TTVM supports the
ability to run, log, and replay real device drivers in the
guest OS, whereas prior virtual-machine replay systems
ran only para-virtualized device drivers in the guest OS.
In addition, TTVM can travel quickly forward and back-
ward in time through its use of checkpoints and undo
and redo logs, whereas ReVirt supported only a single
checkpoint of a powered-off virtual machine and Hyper-
visor did not need to support time travel at all (it only
supported replay within an epoch).

Another approach for providing time travel is to usc a
complete machine simulator, such as Simics [18]. Simics
supports deterministic replay for operating systems and
applications and has an interface to a debugger. How-
ever, Simics is drastically slower than TTVM, and this
makes debugging long runs impractical. On a 750 MHz
Ultrasparc II1, Simics executes 2-6 million x86 instruc-
tions per second (several hundred times slower than na-
tive) [18], whercas virtual machines typically incur a
slowdown of less than 2x.

8 Conclusions and future work

We have described the design and implementation of a
time-traveling virtual machine and shown how 1o use
TTVM to add powerful capabilities for debugging op-
crating systems. We integrated TTVM with a general-

purpose debugger, implementing commands such as re-
verse breakpoint, reverse watchpoint, and reverse step.

TTVM added recasonable overhead in the context of

debugging. The logging needed to support time travel
for three OS-intensive workloads added 3-12% in run-
ning time and 2-85 KB/sec in log space. Taking check-
points cvery minute added less than 4% time overhead
and 1-5 MB/scc space overhead. Taking checkpoints ev-
cry 10 second to prepare for debugging a portion of a run
added 16-33% overhead and enabled reverse debugging
commands to complete in about 12 seconds.

We used TTVM and our new reverse debugging com-
mands to fix four OS bugs that were difficult to find with
standard debugging tools. We found the reverse debug-
ging commands to be intuitive to understand and fast and
casy to use. Reverse debugging proved especially helpful
in finding bugs that were fragile due to non-determinism,
bugs in device drivers, bugs that required long runs to
trigger, bugs that corrupted the stack, and bugs that were
detected after the relevant stack frame was popped.

Possible future work includes exploring non-
traditional debugging operations that arc cnabled by
time travel and deterministic replay. For example, one
could measure the cffects of a programmer-induced
change by forking the exccution and comparing the
results after the change with the results of the original
run.
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“The logging added 3-12% 1n
running time and 2-85 KB/sec in
log space.”

“Taking checkpoints every minute
added less than 4% time overhead
and 1-5 MB/sec space overhead.”

“Taking checkpoints every 10
second added 16-33% overhead
and enabled reverse debugging
commands to complete in about
12 seconds”



2GDB: linked list storage of every memory op
+ Easy to build and reason about
- Both recording and replaying Is very slow

2King (et al): Periodic state checkpointing
+ Easy to jump between large period of time
+ Can trade better fidelity for greater overhead
- Have to replay execution between checkpoints

2King (et al): Only records external, non-deterministic events
+ Reduces log size and improves performance
- synchronizing external events becomes complicated
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compilation-based tooling

2Rather than interrupt execution to
return control-flow to a debugger,
weave Iinstrumentation into the
existing codebase at runtime

2Allows for both better
performance and more flexible
analysis tools
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Abstract

Robust and powerlul soltware instrumentsbon tools are essential
lor program analys:s tasks such & profilng, perlormance evalu-
atiory, ard bug detection. To meet this need, we have developed
& now imstrumentation system Galled Pin. Our gosls are W pro-
vide easy-to-we, portable, transparent, and efficient iestrumenta-
ton. Instrumentation tools (called Pimtools) are wrntten m C/C++
using Pmn’s nnch APL Pin follows the model of ATOM, allowing the
ool writer to analyze an apphcation at the instruchon level wath-
out the need for éetanled knowledge ol the underlying instruchon
set. The API s designed to be architecture independent wherever
possable, making Pmtools source compatible across diflerent archa-
tectures. However, & Pintool Gan sccess architecture-specific detals
when necessary. Instrumentation with Pin 18 mostly transparent as
the application anxd Pintool observe the spphcabon’s ongmal, umin-
strumented behavior. Pin uses dynamic compilation 10 mstrument
executables while they are runming. For efliciency, Pin uses sev-
eral techmgues, includimg inhmng, register re-allocation, hiveness
analysas, and instruction scheduling to oplimize mstrumentation
Thas lully auteenated approach dehivers sgmiflicantly better mstru-
mentation performance than simlar ols. For example, Pin s 3.3x
faster than Valgrind ané 2x [aster thar DynamoRI10 for basac-block
counting. To :llustrate Pin's versatility, we desenbe two Pmtools
i daily use to analyze produchion sollware. Pin s publcly avail-
able for Linux platforms on four archatectures: [A32 (32-bat x86),
EMGAT (64-it x86), lamum®, and ARM. In the ten months sice
Pir 2 was released m July 2004, there bave boen over 3000 down-
loads from 1ts website.

Categories and Subject Descriptors D25 [Software Engincer
img]: Testing and Debugging-code mspections and walk-throughs,

debugging ads, tracing: D34 | Programming Larguages): Processors-

compalers, meremental compilers
General Terms  Languages, Perlormance, Expenimentabon

Keywords  Instrumentsbon, program snalysis tools, dynamc com-
mlation
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dresses (both matruction ard dGatg) #nd same values (both rewdaster

1. Introduction

As sollware complexity mcreases, instrumentation—a techmque
for mserting extra code 1nto an apphication 1o observe s behavaor

13 becomnng more important. Instrumentation can be performed at
varous stages: i the source code, at comple e, post hink tme,
or al run time. Pin 15 & software system that perfoems run-time
birary mstrumentation of Linux applicabons

The goal of Pin 1S w0 peovide an mstrumentation platiorm foe
batlding & wide vanety of program analysas tools lor multiple arcin
tectures. As a resull, the design emphasizes eave-of-wse, portabil
ity, transparency, efficiency, ard robustness. This peper descnbes
the design of Pin and shows how 1t provades these lestures.

Pin's mstrumentation 18 easy (o we. [1s user model 5 sirmalar
to the popular ATOM [30] API, which allows & tool o msert calls
W isstrumentabon at arbitrary Jocations m the executable. Users
Co not pead o manuelly mhee mstruchons or save and restore
state. Pin provades a nnich API that abstracts away the underlying
mstruction set 1diosyncrasies, making 1t possible o write partable
mstrumentation tools. The Pmn distnbution mcludes many sample
archatecture-mdependent Pintools mcluding prolilers, cache ssmu-
katoes, trace analyzers, and memory bug checkers. The API also
allows access 1o architecture-specific infoemation.

Pin provides efficient instrumentation by using & just-m-time
(JIT) compaler to mrsert andd oplimze code. In addiion o some
stardard teckmques for dynamic instrumentation systems includ
mg codde cachmng and trace nking, Pin implements reister re
allocation, inlining, liveness analysis, ard instruction scheduling W
optamize ntted code. Ths fully automated appeosch distingusshes
Pin {rom most other instrumentsbon tools which reguire the user’™s
assistance to boost perlormance. For example, Valgnnd [22] re-
hies on the tool wrnter W msert special operations i thear -
termedhate representation i oeder to perfoem mnhimng: simalarly
DynamoRIO [6] requires the tool wnter to manuslly mhne and
save/restore spplication registers.

Another festure that makes Pin ellicient 18 process attaching
and detacking. Like a debugger, Pin can attach 0 a process, m-
strurnent it collect profiles, ané evertually detack. The application
oaly incurs mstrumentation overhead during the penod that Pin s
attached. The ability to attach and detach 5 2 necessity for the m-
strumentation of large, long-runming apphcations.

Pin's JIT-based mstrumentation delers code discovery until run
ume, allowing Pin 1o be more roduest than systems that use static
mstrumentation or code patchmng Pin can seamlessly bandle mixed
code and data, vanasdle-length instructions, statically unknown mn-
drrect jump targets, Cyramacally loaded hbranes, and dynamically
generated code.

Pin preserves the ongimel apphcation bekaviar by providang m-
strumentation ransparency. The spphication observes the same ad-

PLDI "05

“The goal 1s to provide an
implementation platform for
building program analysis tools”

“Its API allows a tool to insert
calls to instrumentation at
arbitrary locations in the
executable”

“Pin provides efficient
instrumentation by using a just-
in-time compiler to insert and
optimize code”
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INS AddInstrumentFunction() mov1l $0x7, -0x8(%rbp)

push  %rbp

TRACE _AddInstrumentFunction() v $onioe.tadi

mov
callg ©0x400430 <malloc@plt>

push  %rbp

mov %rsp,%rbp
R mov $0x100, %edi
RTN AddInstrumentFunction() callq €x400430 <malloc@plt>
I mov %rax,0x200ac8(%rip)
mov $0x0, %eax
callg ©x400540 <bar>
pop %rbp
retq

%rbp
%rsp,%rbp

%rbp

%rsp,%rbp
Ox200blo(%rip),%rax
$0x2a, (%rax)

%rbp

IMG AddInstrumentFunction()

X © 4 32 © A > 3



static void

instrument_gimple (gimple stmt_iterator gsi) if (tcode == COMPONENT_REF) { .
{ tree field = TREE_OPERAND (expr, 1); static gimple_seq

if (TREE_CODE (field) == FIELD DECL) { instr_memory_access (tree expr, int is write)
fld_off = TREE_INT_CST _LOW (DECL_FIELD BIT OFFSET (field)); {
fld_size = TREE_INT CST LOW (DECL_SIZE (field)); tree addr_expr, expr_type, call _expr, fdecl;
if (((f1d_off % BITS PER_UNIT) != 9) gimple_seq gs;
|| ((fld_size % BITS_PER_UNIT) != 09)) { unsigned size;
/* As of now it crashes compilation.
TODO: handle bit-fields as if touching the w

unsigned 1i;

gimple stmt;

enum gimple code gcode;
tree rhs, lhs;

stmt = gsi stmt (gsi);

gcode = gimple code (stmt); e field. */ gcc_assert (is_gimple_addressable (expr));

if (gcode == GIMPLE ASSIGN) { return; addr_expr = build_addr (unshare_expr (expr), current_function_decl);
T T = expr_type = TREE_TYPE (expr);
/* Handle assignment lhs as store. */ } :
lhs = gimple agsign lhs (stmt); } while (TREE_CODE (expr_type) == ARRAY_TYPE)
instrument expr (gsi, lhs 1).’ } expr_type = TREE_TYPE (expr_type);

size = (TREE_INT_CST_LOW (TYPE_SIZE (expr_type))) / BITS_PER_UNIT;
fdecl = get_memory_access_decl (is write, size);
T _MEM_REF, ADDR_EXPR). */ call_expr = build_call_expr (fdecl, 1, addr_expr);

/* Handle operands as loads. */
for (1 = 1; i < gimple num_ops (stmt); i++) {
rhs = gimple op (stmt, i);

/* TODO: handle other cases
(FIELD DECL, MEM_REF, ARRAY_ RANGE_REF, TA

. . . if (tcode != ARRAY_REF gs = NULL;
} instrument_expr (gsi, rhs, ©); && tcode != VAR DECL && tcode != COMBNENT REF force gimple operangf (call expr, &gs, true, 0);
} && tcode != INDIRECT_REF && tcode MEM_REF) return gs;

} return;

func_mops++;

static void stmt = gsi stmt (gsi);
instrument_expr (gimple stmt_iterator gsi, tree expr, int is_write) loc = gimple_location (stmt
{ rhs = is_vptr_store (stmt
if (rhs == NULL)

gs = instr_memory_access (expr, is_write);
else

gs = instr_vptr_update (expr, rhs);

static tree
get_memory_access_decl (int is write, unsigned size)
expr, is write); { t & *decl
ree typ, ecl;
char fname [64];
static tree cache [2][17];

enum tree_code tcode;
unsigned fld_off, fld_size;
tree base, rhs;

gimple stmt;

gimple seq gs; set_location (gs, loc); };_wr}te =_!!1s_wr1te;
location t loc; /* Instrumentation for assignment of a function result 1 §51ze <= 1)
- must be inserted after the call. Instrumentation for 512? = 1§
base = get base address (expr); reads of function arguments must be inserted before the call. elsg 1f_(§?ze <= 3)
if (base == NULL TREE || TREE_CODE (base) == SSA NAME That's because the call can contain synchronization. */ 151Z?f— ) _
|| TREE_CODE (base) == STRING_CST) if (is_gimple_call (stmt) &% is_write) else 1 _(S}Ze <=7)
return; gsi insert _seq_after (&gsi, gs, GSI_NEW STMT); size = 4f
else else if (size <= 15)
tcode = TREE_CODE (expr); } gsi_insert_seq_before (&gsi, gs, GSI_SAME_STMT); elzéze = 8;

size = 16;
k 3 3 )
/ B@].OW are thlngs we dO not 1nstrument d C]. &cach [15 I"il ][SiZ ];

(no possibility of races or not implemented yet). */ . o
if (/* Compiler-emitted artificial variables. */ 1 (*decl == NULL) {
(DECL_P (expr) && DECL_ARTIFICIAL (expr))
/* The var does not live in memory -> no possibility of races. */
|| (tcode == VAR _DECL
&8 TREE_ADDRESSABLE (expr) ==

snprintf(fname, sizeof fname, " tsan %skd",
is write ? "write" : "read", size);
typ = build function_type list (void type_ node,
ptr_type node, NULL_TREE);
*decl = build func_decl (typ, fname);

&& TREE_STATIC (expr) == 0) }
/* Not implemented. */ return *decl:
| | TREE_CODE (TREE_TYPE (expr)) == RECORD_TYPE } ’

|| tcode == CONSTRUCTOR
|| tcode == PARM DECL
/* Load of a const variable/parameter/field. */

|| is_load of_const (expr, is_urite)) thread-sanitizer/blob/master/gcc/tree-tsan.c

return;
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' Although EM64T 5 a 64.bit extension of IA32, we classafy it s a separate
architectare because of s many new featares soch as &4-bit addressing, a
flat address space, twice the number of registers, and new software conven
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Figure 2. Pin's sollware archatecture

mentation APl mvoked by Pirtools. The VM consists ol a just-in-
ture commpiler (JIT), an emulator, and & dispatcher. Aller Pin gams
control of the apphcation, the VM coordinates 1ts components to
execute the spphcabon. The JIT comples and instruments applica-
ton code, which s then launched by the dGspatcher. The compaled
code 13 stored in the code cacke. Entenng/leaving the VM from/lo
the code cache mvolves saving and restoning the apphication regaster
state. The emulator imnterprets instructions that cannot be executed
crrectly. It 18 used lor systemn calls which require special handling
from the VM. Since Pin sits above the operating system, 1t Gan oaly
caplure wser-level code.

As Figure 2 shows, there are three binary programs peesent
when an mstrumented program 18 runmng: the application, Pin, and
the Pmntool. Pin 1s the engne that jats and instruments the spplica-
ton. The Pintool contains the mstrumentation and aralysis routines
and 18 hrked with & hbeary that allows 1t to commumcate with Pin.
While they share the same address space, they do not share any h-
brarnes and so there are typacally three copres of glibe. By makmng
all of the Ibranes private, we avoud unwanted mteraction between
Pir, the Pintool, and the spplhcabon. One example ol & problematac
interaction 18 when the apphcation executes a glib c funchon that
15 not reentrant. 1f the spphication starts executing the furction and
then tries o execute some code that tnggers further compalation, 1t
will enter the JIT. If the JIT executes the same glibe funchon, 1t
will enter the same procedure & second tme winle the spplicabon
15 stll execuling i, causing an error. Since we have separate copies
of glibe for cach component, Pin and the applhcabon do not share
any data and carnot have 2 re-entrancy problem. The same prod-
lem Gan occur when we it the analysis code m the Pintoo] that
calls glibe (tting the snalysis routine sllows us to greatly reduce
the overhead of simple instrumentsbon on Itantum).

3.2 Injecting Pin

The imjector loxds Pin into the address space of an spphcation. In-
jection uses the Urax Plrace APl 1o obtam control of an apphcstion
and capture the processor context. It loads the Pin binary mto the
apphcation address space and starts it runnng. Aflter mmtizhzang
itsell] Pin Joads the Pintoo] mto the adéress space and starts it run-
mng. The Pintool imtiahizes atsel! and then requests that Pin start
the apphication. Pin creates the imtial context and starts ptting the

apphcation 2t the entry poart (or 2t the current PC in the case ol

attach). Using Ptrace as the mechamsm for igechion allows us o
attach 10 an slready runming process in the same way as a éebug-
ger. It 18 also passable to éetack from an mstrumented process and
continue executing the ongnal, unnstrumented code.

L1 System Overview

Frgure 2 illustrates Pin's sollware architecture. At the kaghest level,
Pin comsists ol'a virtual machme (VM), & code cacke, and an instru-

Other 10ols hke DynamoRIO [6] rely on the LD PRELOAD en-
viroament variable to force the Gynamae Joader to load & shared
hbrary mn the address space. First, LD PRELOAD does ot wark with
siatically-linked biranes, which many of our users require. Sec-
ond, loading an extra shared hbrary will skafl all ol the apphca-
tion shared hbranes and some dynamcally allocated memory to
a higher address when compared 10 an urunstrumented execulion.
We atternpt to preserve the onginal bebavior &3 much as possable.
Third, the mstrumentation tool cannol gam control of the apph-
cation until aller the shareé-hbvrary loader has partially executed,
while our method 18 sble 1o mstrument the very Lrst mstruction mn
the program. This capabality actually exposed 2 bug in the Linux
shared-hbrary loader, resulting from & reference 1o unmmtislized
Cats on the stack.

13 TheJIT Compiler
3131 Basics

P compales [rom ore ISA drectly mto the seme ISA (e.g., [A32
to IA32, ARM 1o ARM) withoul gong through an mtermediste
format, ardd the compiled code 15 storec in a soflware-based code
cache. Only code resudng m the code cache 15 executed—the ongi-
el codde 18 never executed. An apphication 15 compaled one drace sl
a ume. A trace 18 & straight-line sequence ol instructions which tex-
munates at ore of the conditions: (1) an wnconditional control trans-
fer (branch, call, or return), (1) a pee-delined number ol conditional
coatrol tramsiers, or (m) a pre-defined numbder of mstruchoes have
been fetched m the trace. In addiion 1o the last exil, & trace may
kave muluple swde-exats (the conditiona] control transfers). Each
exit imtially branches 10 a stub, whach re-darects the control to the
VM. The VM determanes the target address (which 18 stabeally un-
known lor incirect control translers), gererates a new trace lor the
target i3t Bas not been generated before, and resumes the execution
at the tarpet trace.

In the rest of thus secbon, we discuss the lollowing leatures of
our JIT: trace hinking, regaster re-reallocation, and instrumentation
oplimization. Our current performance ellort 1s locusing on [A32,
EMOAT, and Itanium, whach bave all these features mmplemented.
While the ARM versaon of Pin s fully funchonsl, some ol the
oplimzations are not yet unplemented.

3.3.2 Trace Linking
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trace exit to the targel trace, bypassing the stub and VM. We
call thus process trace linking. Linking a dircct control transier
15 straghtforward & 1t has a unique target. We samply patch the

anch at the end of one trace to jump to the target trace. However,
an indirect control transfer (2 jump, call, or return) has multuple
possible targets and therelore needs some soet of target-peediction
mechamsm.

Figure 3(a) illustrates our iclirect hnkmng spproack as imple-
mented on the x86 architecture. Pin translates the indirect jump
mto & move and & direct jump. The move puts the indirect targel
address mto rogister Yedx (this register as well as the Xecx and
%esi shown in Figure 3(a) are obtamed via regaster re-allocation,
as we will discuss m Section 3.3.3). The direct jump goes to the
first predicted tarpet address Oxd0001000 (which s mapped to
0x70001 000 n the code cache for thas example). We compare
%edx sgamst 0x40001000 using the lea' jecxz 1chom used m Dy-
ranoRIO [6], which avoads modilymng the condibonal ags reg-
ster eflags 1! the prediction 1s correct (e, %acx-0), we will
branch to matckl 1o execute the remammng code of the predicted
targel If the predaction 3 wrong, we will try arother pradicted tas-
get Oz 40002000 (mapped to 0x70002000 1n the code cacke). 1'the
target 18 not lound on the cham, we will branch to LookupBtab.1,
which scarches lor the target in & kash table (whose base address 15
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movl

addl

mov
sub

$0x7, -0x8(%rbp)

$0x1, -0x8(%rbp)
-0x8(%rbp), %eax
$0x3, %eax

%eax, -0x4(%»rbp)
$0x4 (%rbp), %eax

%eax, -0x8(%rbp)

PLDI "05

recordMemirite (%rip, -0x8(%rbp))
mov 1 $0x7, -0x8(%rbp)

recordMemWrite (%rip, -0x8(%rbp))
addl $0x1, -0x8(%rbp)

-0x8(%rbp), %eax
$0x3, %eax

%eax, -0x4(%»rbp)
recordMemiWrite (%rip, -9x4(%rbp))
mov $0x4(%rbp), %eax

recordMemWrite (%rip, -0x8(%rbp))
add %eax, -0x8(%rbp)



code rewriting
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callg
mov
mov
callg
pop
retq

push
mov
sub
mov(q
mov
add
mov
mov
callg

leaveq

retq

push
mov
mov
mov 1l
pop
retq

%rbp

%rsp,%srbp

$0x100, %edi

Ox400430 <malloc@plt>
%rax,0x200ac8(%rip)
$0x0, %eax

Ox400540 <bar>

%rbp

%rbp

%rsp,%»rbp

$0x10, %rsp

$0x0, -0x8(%rbp)
-0x8(%rbp) ,%rax
$0x1c,%rax
%rax,0x200ae9(%rip)
$0x0, %eax

Ox40052d <baz>

%rbp

%rsp,%rbp
©x200b10(%rip),%rax
$0x2a, (%rax)

%rbp

(callg ©x

jump rewriting

push
(([e}V;
mov
callg
mov
mov
callq
pop
retq

dead

%rbp

%rsp,%srbp

$0x100, %edi

Ox400430 <malloc@plt>
%rax,0x200ac8(%rip)
$0x0, JBwax

Oxdeadbeef

%rbp

beef



push
mov
mov
callg
mov
mov
callg
pop
retq

push
mov
sub
mov(q
mov
add
mov
mov
callg

leaveq

retq

push
mov
mov
mov 1l
pop
retq

%rbp
%rsp,%srbp
$0x100, %edi

Ox400430 <malloc@plt>

%rax,0x200ac8(%rip)
$0x0, %eax

Ox400540 <bar>
%rbp

%rbp

%rsp,%»rbp

$0x10, %rsp

$0x0, -0x8(%rbp)
-0x8(%rbp) ,%rax
$0x1c,%rax
%rax,0x200ae9(%rip)
$0x0, %eax

Ox40052d <baz>

%rbp

%rsp,%rbp
©x200b10(%rip),%rax
$0x2a, (%rax)

%rbp

jump rewriting
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mov
mov
callg
(([e}V;
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pop
retq
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(([e}V;
sub
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mov
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mov
(([e}V;
callqg

leaveq

retq

%rbp

%rsp,%rbp

$0x100, %edi

Ox400430 <malloc@plt>
%rax,0x200ac8(%rip)
$0x0, %eax

0x400540 <bar>

%rbp

%rbp

%rsp,%rbp

$0x10, %rsp

$0x0, -0x8(%rbp)
-0x8(%rbp) ,%rax
$0x1c,%rax
%rax,0x200ae9(%rip)
$0x0, %heax
Oxdeadbeef



jump rewriting

push  %rbp push  %rbp

mov %rsp,%srbp mov %rsp,srbp

mov $0x100, %edi mov $0x100, %edi

callg ©x400430 <malloc@plt> callg ©x400430 <malloc@plt>
mov %rax,0x200ac8(%rip) mov %rax,0x200ac8(%rip)
mov $0x0, %eax mov $0x0, %eax

callg ©0x400540 <bar> callg ©0x400540 <bar>

pop %rbp pop %rbp

retq e

push  %rbp push  %rbp

mov %rsp,%rbp (([e}V; %rsp,%rbp

sub $0x10,%rsp sub $0x10,%rsp

movg  $0x0,-0x8(%rbp) movg  $0x0,-0x8(%rbp)

mov -0x8(%rbp) ,%rax mov -0x8(%rbp) ,%rax

add $0x1c,%rax add $0x1c,%rax

mov  %rax,0x200ae9(%rip) mov %rax,0x200ae9(%rip)
mov $0x0, %eax mov $0x0, %eax

callg ©0x40052d <baz> callg ©0x40052d <baz>
leaveq leaveq

retq retq

push  %rbp push  %rbp

(([e}V; %rsp,%rbp mov %rsp,%rbp

mov ©x200b10(%rip),%rax mov Ox200b10(%rip) ,%rax
movl  $0x2a, (%rax) movl  $0x2a, (%rax)

pop %rbp pop %rbp

retq retq



stateless(ish) instrumentation

// This routine 1s executed each time malloc is called.

VOID BeforeMalloc( int size, THREADID threadid )
{

PIN GetLock(&lock, threadid+l);

fprintf(out, "thread %d entered malloc(%d)\n", threadid, size);
fflush(out);

PIN ReleaseLock(&lock);

// This function is called before every instruction is executed
VOID docount() { icount++; }

https://software.intel.com/sites/landingpage/pintool/docs/67254/Pin/html/index.htmI#EXAMPLE
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Abstract

Dynamic binary instrumentation (DBI) frameworks make 1t casy
to build dynamic binary analysis (DBA) tools such as checkers
and profilers. Much of the focus on DBI frameworks has been on
performance; hittle attention has been paid to their capabilities. As a
result, we believe the potential of DBI has not been fully exploited.

[n this paper we describe Valgrind, a DBI framework designed
for building heavyweight DBA tools. We focus on its unique sup-
port for shadow values—a powerful but previously hittle-studied
and difficult-to-implement DBA technigue, which requires a tool
to shadow every register and memory value with another value that
describes it. This support accounts for several crucial design fea-
tures that distinguish Valgnnd from other DBI frameworks. Be-
cause of these features, lightweight tools bualt with Valgrind run
comparatively slowly, but Valgrind can be used to build more in-
teresting, heavyweight tools that are difficult or impossible to build
with other DBI frameworks such as Pin and DynamoRIO.

Categories and Subject Descriptors 1D.2.5 |Software Engineer-
ing]: Testing and Debugging—debugging aids, monitors; D.3.4
|Programming Languages): Processors—incremental compilers

General Terms Design, Performance, Experimentation

Keywords Valgnnd, Memcheck, dynamic binary instrumentation,
dynamic binary analysis, shadow values

1. Introduction

Valgrind 15 a dynamic binary instrumentation (DBI) framework
that occupies a unigue part of the DBI framework design space.
This paper describes how 1t works, and how it differs from other
frameworks.

1.1 Dynamic Binary Analysis and Instrumentation

Many programmers use program analysis tools, such as error
checkers and profilers, to improve the quality of their software.
Dynamic binary analysis (DBA) tools are one such class of tools;
they analyse programs at run-time at the level of machine code.
DBA tools are often implemented using dynamic binary instru-
mentation (DBI), whereby the analysis code 1s added to the onginal
code of the client program at run-time. This 15 convenient for users,
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as no preparation (such as recompiling or relinking) 1s needed.
Also, it gives 100% instrumentation coverage of user-mode code,
without requinng source code. Several generic DBI frameworks ex-
151, such as Pin [11], DynamoRIO [3], and Valgnnd [18, 15]). They
provide a base system that can instrument and run code, plus an
environment for writing tools that plug into the base system.

The performance of DBI frameworks has been studied closely [1,

2, 9). Less attention has been paid to their instrumentation capabil-
ities, and the tools built with them. This is a shame, as it 1s the tools
that make DBI frameworks useful, and complex tools are more in-
teresting than simple tools. As a result, we believe the potential of
DBI has not been fully exploited.

1.2 Shadow Value Tools and Heavyweight DBA

One interesting group of DBA tools are those that use shadow
values. These tools shadow, purely in software, every register and
memory value with another value that says something about it. We
call these shadow value tools. Consider the following motivating
l1st of shadow value tools; the descniptions are brief but demonstrate
that shadow values (a) can be used in a wide vaniety of ways, and
(b) are powerful and interesting.

Memcheck |25) uses shadow values to track which bit values
are undefined (1.e. unimtialised, or denved from undefined values)
and can thus detect dangerous uses of undefined values. It 1s used
by thousands of C and C++ programmers, and 1s probably the most
widely-used DBA tool 1n existence.

TaintCheck |20] tracks which byte values are tainted (1.¢. from
an untrusted source, or denived from tainted values) and can
thus detect dangerous uses of tainted values. TaintTrace (6] and
LIFT |23] are similar tools.

McCamant and Emst’s secret-tracking tool [13] tracks which
bit values are secret (e.g. passwords), and determines how much
information about secret inputs 15 revealed by public outputs.,

Hobbes |4] tracks each value's type (determined from opera-
tions performed on the value) and can thus detect subseguent oper-
ations inappropriate for a value of that type.

DynComp#8 | 7] similarly determines abstract types of byte val-
ues, for program comprehension and invariant detection purposes.

Annelid |16] tracks which word values are array pointers, and
from this can detect bounds errors.

Redux [17) creates a dynamic dataflow graph, a visualisation of
a program's entire computation; from the graph one can see all the
prior operations that contnibuted to the each value’s creation.

[n these tools cach shadow value records a simple approxi-
mation of each value's history—e.g. one shadow bit per bit, one

"Purify [8) is a memory-checking tool similar 10 Memcheck. However,
Purify is not a shadow value tool as it does not does not track definedness
of values through registers. As a result, it detects undefined value errors less
accurately than Memcheck.
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they analyse programs at run-time at the level of machine code.
DBA tools are often implemented using dynamic binary instru-
mentation (DBI), whereby the analysis code 1s added to the onginal
code of the client program at run-time. This 15 convenient for users,

Permission to make digitad or hard copies of 21l or part of this work for persomal or
classroom wse is grimted withow fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
om the first page. To copy atherwise, to republish, to post on servers or to redistribute

Julian Seward
OpenWorks LLP, Cambridge, UK
julian@open-works.co.uk

as no preparation (such as recompiling or relinking) 1s needed.
Also, it gives 100% instrumentation coverage of user-mode code,
without requinng source code. Several generic DBI frameworks ex-
151, such as Pin [11], DynamoRIO [3], and Valgnnd [18, 15]). They
provide a base system that can instrument and run code, plus an
environment for writing tools that plug into the base system.

The performance of DBI frameworks has been studied closely [1,

2, 9). Less attention has been paid to their instrumentation capabil-
ities, and the tools built with them. This is a shame, as it 1s the tools
that make DBI frameworks useful, and complex tools are more in-
teresting than simple tools. As a result, we believe the potential of
DBI has not been fully exploited.

1.2 Shadow Value Tools and Heavyweight DBA

One nteresting group of DBA tools are those that use shadow
values. These tools shadow, purely in software, every register and
memory value with another value that says something about it. We
call these shadow value tools. Consider the following motivating
l1st of shadow value tools; the descniptions are brief but demonstrate
that shadow values (a) can be used in a wide vaniety of ways, and
(b) are powerful and interesting.

Memcheck |25)] uses shadow values to track which bit values
are undefined (1.e. unintialised, or denved from undefined values)
and can thus detect dangerous uses of undefined values. It 1s used
by thousands of C and C++ programmers, and 1s probably the most
widely-used DBA tool 1n existence.

TaintCheck |20] tracks which byte values are tainted (1.¢. from
an untrusted source, or dernived from tainted values) and can
thus detect dangerous uses of tainted values. TaintTrace (6] and
LIFT |23] are similar tools.

McCamant and Emst’s secret-tracking tool [13] tracks which
bit values are secret (e.g. passwords), and determines how much
information about secret inputs 15 revealed by public outputs.,

Hobbes |4] tracks each value's type (determined from opera-
tions performed on the value) and can thus detect subseguent oper-
ations inappropriate for a value of that type.

DynComp#8 | 7] similarly determines abstract types of byte val-
ues, for program comprehension and invariant detection purposes.

Annelid |16] tracks which word values are array pointers, and
from this can detect bounds errors.

Redux [17) creates a dynamic dataflow graph, a visualisation of
a program's entire computation; from the graph one can see all the
prior operations that contnibuted to the each value’s creation.

[n these tools cach shadow value records a simple approxi-
mation of each value's history—e.g. one shadow bit per bit, one

"Purify [8) is a memory-checking tool similar 10 Memcheck. However,
Purify is not a shadow value tool as it does not does not track definedness
of values through registers. As a result, it detects undefined value errors less
accurately than Memcheck.
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1. Introduction

Valgrind 15 a dynamic binary instrumentation (DBI) framework
that occupies a unique part of the DBI framework design space.
This paper describes how 1t works, and how it differs from other
frameworks.

1.1 Dynamic Binary Analysis and Instrumentation

Many programmers use program analysis tools, such as error
checkers and profilers, to improve the quality of their software.
Dynamic binary analysis (DBA) tools are one such class of tools;
they analyse programs at run-time at the level of machine code.
DBA tools are often implemented using dynamic binary instru-
mentation (DBI), whereby the analysis code 1s added to the onginal
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as no preparation (such as recompiling or relinking) 1s needed.
Also, it gives 100% instrumentation coverage of user-mode code,
without requinng source code. Several generic DBI frameworks ex-
151, such as Pin [11], DynamoRIO [3], and Valgnnd [18, 15]). They
provide a base system that can instrument and run code, plus an
environment for writing tools that plug into the base system.

The performance of DBI frameworks has been studied closely [1,

2, 9). Less attention has been paid to their instrumentation capabil-
ities, and the tools built with them. This is a shame, as it 1s the tools
that make DBI frameworks useful, and complex tools are more in-
teresting than simple tools. As a result, we believe the potential of
DBI has not been fully exploited.

1.2 Shadow Value Tools and Heavyweight DBA

One nteresting group of DBA tools are those that use shadow
values. These tools shadow, purely in software, every register and
memory value with another value that says something about it. We
call these shadow value tools. Consider the following motivating
l1st of shadow value tools; the descniptions are brief but demonstrate
that shadow values (a) can be used in a wide vaniety of ways, and
(b) are powerful and interesting.

Memcheck |25)] uses shadow values to track which bit values
are undefined (1.e. unintialised, or denved from undefined values)
and can thus detect dangerous uses of undefined values. It 1s used
by thousands of C and C++ programmers, and 1s probably the most
widely-used DBA tool 1n existence.

TaintCheck |20] tracks which byte values are tainted (1.¢. from
an untrusted source, or dernived from tainted values) and can
thus detect dangerous uses of tainted values. TaintTrace (6] and
LIFT |23] are similar tools.

McCamant and Emst’s secret-tracking tool [13] tracks which
bit values are secret (e.g. passwords), and determines how much
information about secret inputs 15 revealed by public outputs.,

Hobbes |4] tracks each value's type (determined from opera-
tions performed on the value) and can thus detect subseguent oper-
ations inappropriate for a value of that type.

DynComp#8 | 7] similarly determines abstract types of byte val-
ues, for program comprehension and invariant detection purposes.

Annelid |16] tracks which word values are array pointers, and
from this can detect bounds errors.

Redux [17) creates a dynamic dataflow graph, a visualisation of
a program's entire computation; from the graph one can see all the
prior operations that contnibuted to the each value’s creation.

[n these tools cach shadow value records a simple approxi-
mation of each value's history—e.g. one shadow bit per bit, one

"Purify [8) is a memory-checking tool similar 10 Memcheck. However,
Purify is not a shadow value tool as it does not does not track definedness
of values through registers. As a result, it detects undefined value errors less
accurately than Memcheck.
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Abstract

Dynamic binary instrumentation (DBI) frameworks make 1t casy
to build dynamic binary analysis (DBA) tools such as checkers
and profilers. Much of the focus on DBI frameworks has been on
performance; little attention has been paid to their capabilities. Asa
result, we believe the potential of DBI has not been fully exploited.

[n this paper we describe Valgrind, a DBI framework designed
for building heavyweight DBA tools. We focus on its unique sup-
port for shadow values—a powerful but previously hittle-studied
and difficult-to-implement DBA technigue, which requires a tool
to shadow every register and memory value with another value that
describes it. This support accounts for several crucial design fea-
tures that distinguish Valgnnd from other DBI frameworks. Be-
cause of these features, lightweight tools bualt with Valgrind run
comparatively slowly, but Valgrind can be used to build more in-
teresting, heavyweight tools that are difficult or impossible to build
with other DBI frameworks such as Pin and DynamoRIO.

Categories and Subject Descriptors 1D.2.5 |Software Engineer-
ing): Testing and Debugging—debugging aids, monitors; D.3.4
|Programming Languages): Processors—incremental compilers

General Terms Design, Performance, Experimentation

Keywords Valgnnd, Memcheck, dynamic binary instrumentation,
dynamic binary analysis, shadow values

1. Introduction

Valgrind 15 a dynamic binary instrumentation (DBI) framework
that occupies a unigue part of the DBI framework design space.
This paper describes how 1t works, and how it differs from other
frameworks.

1.1 Dynamic Binary Analysis and Instrumentation

Many programmers use program analysis tools, such as error
checkers and profilers, to improve the quality of their software.
Dynamic binary analysis (DBA) tools are one such class of tools;
they analyse programs at run-time at the level of machine code.
DBA tools are often implemented using dynamic binary instru-
mentation (DBI), whereby the analysis code 1s added to the original
code of the client program at run-time. This 15 convenient for users,
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as no preparation (such as recompiling or relinking) 1s needed.
Also, it gives 100% instrumentation coverage of user-mode code,
without requinng source code. Several generic DBI frameworks ex-
151, such as Pin [11], DynamoRIO [3], and Valgnnd [18, 15]). They
provide a base system that can instrument and run code, plus an
environment for writing tools that plug into the base system.

The performance of DBI frameworks has been studied closely [1,

2, 9). Less attention has been paid to their instrumentation capabil-
ities, and the tools built with them. This is a shame, as it 1s the tools
that make DBI frameworks useful, and complex tools are more in-
teresting than simple tools. As a result, we believe the potential of
DBI has not been fully exploited.

1.2 Shadow Value Tools and Heavyweight DBA

One interesting group of DBA tools are those that use shadow
values. These tools shadow, purely in software, every register and
memory value with another value that says something about it. We
call these shadow value tools. Consider the following motivating
l1st of shadow value tools; the descniptions are brief but demonstrate
that shadow values (a) can be used in a wide vaniety of ways, and
(b) are powerful and interesting.

Memcheck |25) uses shadow values to track which bt values
are undefined (1.e. unintialised, or denved from undefined values)
and can thus detect dangerous uses of undefined values. It 1s used
by thousands of C and C++ programmers, and 1s probably the most
widely-used DBA tool in existence.”

TaintCheck |20] tracks which byte values are tainted (1.¢. from
an untrusted source, or derived from tainted values) and can
thus detect dangerous uses of tainted values. TaintTrace (6] and
LIFT |23] are similar tools.

McCamant and Emst’s secret-tracking tool [13] tracks which
bit values are secret (e.g. passwords), and determines how much
information about secret inputs 1s revealed by public outputs.

Hobbes |4] tracks cach value's type (determined from opera-
tions performed on the value) and can thus detect subseguent oper-
ations inappropriate for a value of that type.

DynComp# | 7] similarly determines abstract types of byte val-
ues, for program comprehension and invariant detection purposes.

Annelid |16] tracks which word values are array pointers, and
from this can detect bounds errors.

Redux [17) creates a dynamic dataflow graph, a visualisation of
a program's entire computation; from the graph one can see all the
prior operations that contnibuted to the each value’s creation.

[n these tools cach shadow value records a simple approxi-
mation of cach value's history—e.g. one shadow bit per bit, one

"Purify [8) is a memory-checking tool similar 10 Memcheck. However,
Purify is not a shadow value tool as it does not does not track definedness
of values through registers. As a result, it detects undefined value errors less
accurately than Memcheck.
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the core passes to it. Writing a new tool plug-in (and thus a new
Valgrind tool) is much easier than writing a new DBA tool from

Most DBI frameworks use injection-style methods rather than
having their own program loader. As well as avoiding the problems
encountered by the prior two approaches, our third approach has
two other advantages. First, it gives Valgrind great control over
memory layout. Second, it it avoids dependencies on other tools
such as the dynamic linker, which we have found to be an excellent
strategy for improving robustness.”

3.4 Guest and Host Registers

Valgrind itself runs on the machine’s real or khost CPU, and (con-
ceptually) runs the client program on a simulated or guesr CPU.
We refer to registers in the host CPU as host registers and those of
the simulated CPU as guest registers. Due to the dynamic binary
recompilation process, a guest register’s value may reside in one of
the host’s registers, or it may be spilled to memory for a variety of
reasons. Shadow registers are shadows of guest registers.

Valgrind provides a block of memory per client thread called
the ThreadState. Each one contains space for all the thread’s guest
and shadow registers and is used to hold them at various times,
in particular between each code block. Storing guest registers in
memory between code blocks sounds like a bad idea at first, be-
cause it means that they must be moved between memory and the
host registers frequently, but it is reasonable for heavyweight tools
with high host register pressure for which the benefits of a more
optimistic strategy are greatly diminished.

3.5 Representation of code: D&R vs. C&A

There are two fundamental ways for a DBI framework to represent
code and allow instrumentation.

Valgrind uses disassemble-and-resynthesise (D&R): machine
code is converted to an IR in which each instruction becomes
one or more IR operations. This IR is instrumented (by adding
more IR) and then converted back to machine code. All of the
original code’s effects on guest state (e.g. condition code setting)
must be explicitly represented in the IR because the original client
instructions are discarded and the final code is generated purely
from the IR. Valgrind’s use of D&R is the single feature that most
distinguishes it from other DBI frameworks.

Other DBI frameworks use copy-and-annotate (C&A): incom-
ing instructions are copied through verbatim except for necessary
control flow changes. Each instruction is annotated with a descrip-
tion of its effects, via data structures (e.g. DynamoRIO) or an
instruction-querying API (e.g. Pin). Tools use the annotations to
guide their instrumentation. The added analysis code must must be
interleaved with the original code without perturbing its effects.

Hybrid approaches are possible. For example, earlier versions
of Valgrind used D&R for integer instructions and C&A for FP and
SIMD instructions (this was more by accident than design). Vari-
ations are also possible; for example, DynamoRIO allows instruc-
tion bytes to be modified in-place before being copied through.

Each approach has its pros and cons, depending on the instru-
mentation requirements. D&R may require more up-front design
and implementation effort, because a D&R representation is ar-
guably more complex. Also, generating good code at the end re-
quires more development effort—Valgrind's JIT uses a lot of con-
ventional compiler technology. In contrast, for C&A, good client
code stays good with less effort. A D&R JIT compiler will proba-
bly also translate code more slowly.

D&R may not suitable for some tools that require low-level in-
formation. For example, the exact opcode used by each instruc-

* For example, Valgrind no longer uses the standard C library, but has a
small version of its own. This has avoided any potential complications
caused by having two copies of the C library in the address space—one
for the client, and and for Valgrind and the tool. It also made the AIX port
mnch cacier Becanee ALY '« € hbrary 1¢ ecanbhaantially different too 1 innx '

memory mappings to force components into the right place, which
tured out to be somewhat unreliable.

tion may be lost. IR annotations can help, however—for example,
Valgrind has “marker” statements that indicate the boundaries, ad-
dresses and lengths of original instructions. C&A can suffer the
same problem if the annotations are not comprehensive.

D&R’s strengths emerge when complex analysis code must be
added. First, D&R’s use of the same IR for both client and analysis
code guarantees that analysis code is as expressive and powerful
as client code. Making all side-effects explicit (e.g. condition code
computations) can make instrumentation easier.

The performance dynamics also change. The JIT compiler can
optimise analysis code and client code equally well, and naturally
tightly interleaves the two. In contrast, C&A must provide a sep-
arate way to describe analysis code (so C&A requires some kind
of IR after all). This code must then be fitted around the original
instructions, which requires effort (either by the framework or the
tool-writer) to do safely and with good performance. For example,
Pin analysis code is written as C functions (i.e. the analysis code
IR is C), which are compiled with an external C compiler, and Pin
then inlines them if possible, or inserts calls to them.

Finally, D&R is more verifiable—any error converting machine
code to IR is likely to cause visibly wrong behaviour, whereas a
C&A annotation error will result in incorrect analysis of a correctly
behaving client.” D&R also permits binary translation from one
platform to another (although Valgrind does not do this). D&R also
allows the original code’s behaviour to be arbitrarily changed.

In summary, D&R requires more effort up-front and is overkill
for lightweight instrumentation. However, it naturally supports
heavyweight instrumentation such as that required by shadow value
tools, and so is a natural fit for Valgrind.

3.6 Valgrind’s IR

Prior to version 3.0.0 (August 2005), Valgrind had an x86-specific,
part D&R, part C&A, assembly-code-like IR in which the units
of translation were basic blocks. Since then Valgrind has had an
architecture-neutral, D&R, single-static-assignment (SSA) IR that
is more similar to what might be used in a compiler. IR blocks are
superblocks: single-entry, multiple-exit stretches of code.

Each IR block contains a list of statements, which are opera-
tions with side-effects, such as register writes, memory stores, and
assignments to temporaries. Statements contain expressions, which
represent pure (no side effects) values such as constants, register
reads, memory loads, and arithmetic operations. For example, a
store statement contains one expression for the store address and
another for the store value. Expressions can be arbitrarily compli-
cated trees (rree IR), but they can also be flattened by introducing
statements that write intermediate values to temporaries (flar IR).

The IR has some RISC-like features: it is load/store, each primi-
tive operation only does one thing (many CISC instructions are bro-
ken up into multiple operations), and when flattened, all operations
operate only on temporaries and literals. Nonetheless, supporting
all the standard integer, FP and SIMD operations of different sizes
requires more than 200 primitive arithmetic/logical operations.

The IR is architecture-independent. Valgrind handles unusual
architecture-specific instructions, such as cpuid on x86, with a
call to a C function that emulates the instruction. These calls have
annotations that say which guest registers and memory locations
they access, so that a tool can see some of their effects while
avoiding the need for Valgrind to represent the instruction explicitly
in the IR. This is another case (like the “marker” statements) where
Valgrind uses IR annotations to facilitate instrumentation (but it is
not C&A, because the instruction is emulated, not copied through).

“This is not just a theoretical concern. Valgrind's old IR used C&A for
SIMD instructions; some SIMD loads were mis-annotated as stores, and
covme SIMD <tares ac lavade for mare than a vear befare beine noticed
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much casier, because AIX's C library 1s substantially different to Linux's.
5.3 Tool Instrumentation Capabilities

In this section, we compare Valgrind’s support for all nine shadow
value requirements against Pin [11], because Pin is the best known
of the currently available DBI frameworks, and the one that has
the most support for shadow values (after Valgrind). The following
comparison is based on discussions with two Pin developers [10].

Pin supports RS (instrument start-up allocations), R8 (instru-
ment heap (de)allocations) and R9 (extra output) directly. It does
not support R6 (instrument system call (de)allocations) and R7 (in-
strument stack (de)allocations) directly, but provides features that
allow a Pin tool to manually support them fairly easily.

For R1 (provide shadow registers) Pin provides “virtual regis-
ters” which are register-allocated along with guest registers and
saved in memory when a thread is not running. Shadow registers
could be stored in them. However, virtual registers are not fully
first-class citizens. For example, there are no 128-bit virtual regis-
ters, so 128-bit SIMD registers cannot be fully shadowed, which
would prevent some tools (e.g. Memcheck) from working fully.

Pin provides no built-in support for R2 (provide shadow mem-
ory), so tools must cope with the non-atomicity of loads/stores and
shadow loads/stores themselves.'” For example, the Pin tool called
pinSEL [14], which uses shadow memory but not full shadow val-
ues, sets and checks an extra interference bir on every shadow load.
This lets it handle any thread switches or asynchronous signals that
occur between a load/store and a shadow load/store (both of which
can occur even on uni-processors under Pin). Multi-threaded pro-
grams running on multi-processors are even trickier, and pinSEL
does not handle them. In comparison, Valgrind’s thread serialisa-
tion and asynchronous signal treatment frees shadow value tools
from having to deal with this issue.

For R3 (instrument read/write instructions) Pin allows all regis-
ter and memory accesses to be seen. However, analysis code in Pin
is written as C functions, which can be inlined if they contain no
control flow. This means that SIMD instructions are again a prob-
lem; if a tool needs to use SIMD instructions in its analysis code
(as Memcheck does), these would have to be written in Pin using
(platform-specific) inline assembly code. This is caused by Pin us-
ing C&A and its method for writing analysis code (C code) having
less expressivity than client code (machine code).

R4 (instrument read/write system calls) is another stumbling
block; it can be done manually within a tool via Pin’s system call
instrumentation, but would require a large effort—each shadow
value tool would essentially need to reimplement Valgrind’s system
call wrappers.

5.4 'Tool Performance

We performed experiments on 25 of the 26 SPEC CPU2000 bench-
marks (we could not run galgel as gfortran failed to compile it).
We ran them with the “reference” inputs in 32-bit mode on a 2.4
GHz Intel Core 2 Duo with 1GB RAM and a 4MB L2 cache run-
ning SUSE Linux 10.2, kernel 2.6.18.2. We compared several tools
built with Valgrind 3.2.1: (a) Nulgrind, the “no instrumentation”
tool; (b) ICntl, an instruction counter which uses inline code to in-
crement a counter for every instruction executed; (c) ICntC, like
ICntl but uses a C function call to increment the counter; and (d)
Memcheck (with leak-checking off, because it runs at program ter-
mination and so would cloud the comparison). Table 2 shows the
slow-down factors of these tools.

Lightweight tools. The mean slow-down of 4.3x for the no-
instrumentation case (Nulgrind) is high compared to other frame-
works. This is consistent with other researchers’ findings—a pre-

U1t does have thread-locking primitives, but they would be too coarse-
grained to be practical for use with shadow memory.

some SIMD stores as loads, for more than a year before being noticed.

[ Program | Nat.(s) | Nulg. ICntl ICntC  Memc. |

bzip2 192.7 35 7.2 10.5 16.1
crafty 924 69 123 22.5 36.0
eon 408.5 75 118 21.0 514
gap 1313 4.0 9.1 13.5 25.5
gee 90.0 53 9.0 14.1 39.0
gzip 212.1 M. 59 9.0 14.7
mcf 87.0 2.0 < b 54 7.0
parser 2189 3.6 7.0 104 17.8
perlbmk 179.6 4.8 9.6 14.6 27.1
twolf 262.5 3.1 6.5 10.7 16.0
vortex 86.7 6.5 11.4 17.8 38.7
vpr 1494 4.1 7.7 11.3 16.4
ammp 3452 34 6.5 9.1 32.7
applu 583.0 52 141 28.1 19.7
apsi 469.0 34 8.2 12.5 16.4
art 100.4 4.7 94 13.7 24.0
equake 118.2 38 8.4 12.4 17.1
facerec 280.9 4.7 8.2 12.2 17.4
fma3d 284.7 4.1 9.4 16.2 26.0
lucas 183.5 3.7 7.1 10.8 248
mesa 148.9 59 103 15.9 579
mgrid 809.1 35 9.8 144 16.9
sixtrack 355.7 56 134 18.3 20.2
swim 388.2 32 119 153 10.7
wupwise 192.1 74 118 17.3 26.7
[ geo. mean | | 43 8.8 13.5 22.1 |

Table 2. Performance of four Valgrind tools on SPEC CPU2000.
Column 1 gives the program name; integer programs are listed be-
fore floating-point programs. Column 2 gives the native execution
time in seconds. Columns 3-6 give the slow-down factors for each
tool. The final row shows each column’s geometric mean.

vious comparison [11] showed that Valgrind is 4.0x slower than
Pin and 4.4x slower than DynamoRI10 on the SPEC CPU2000 inte-
ger benchmarks in the no-instrumentation case, and 3.3x and 2.0x
slower for a lightweight basic block counting tool. "’
Re-implementing chaining in Valgrind would improve these
cases somewhat. However, these lightweight tools are exactly the
kinds of tools that Valgrind is nor targeted at, and Valgrind will
never be as fast as Pin or DynamoRIO for these cases. For example,
consider Valgrind’s use of a D&R representation. For a simple tool

like a basic block counter, D&R makes no sense. Rather, the use of

D&R is targeted towards heavyweight tools. For this reason, we do
not repeat such comparisons with lightweight tools.

The difference between ICntl and ICntC shows the advantage
of inline code over C calls. ICntl could be further improved by
batching counter increments together.

Heavyweight tools built with Valgrind. Memcheck’s mean slow-
down factor is 22.2x. Other shadow value tools built with Valgrind
have similar or worse slow-downs. TaintCheck ran 37x slower on
an invocation of bzip2 [20], but had better performance on an I/O-

bound invocation of the Apache web server. Annelid ran a subset of

the SPEC CPU2000 benchmarks (“train™ inputs) 35.2x slower than
native [16]. McCamant and Emst’s secret tracker has slow-downs
“similar to Memcheck... 10-100x for CPU-bound programs” [13].
Redux did much more expensive analysis and was not practical for
anything more than toy programs [17]. Slow-down figures are not
available for DynCompB [7].

' But the measured Valgrind tool used a C function to increment the
counter; the use of inline code would have narrowed the gap.
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Figure 6. Performance of Pin with basic-block counting instrumentation on the IA32 architecture.

analysis, reducing the average slowdown to 2.8x for integer and
1.5x for floating point. Scheduling of instrumentation code further
reduces the slowdown to 2.5x for integer and 1.4x for floating point.

4.3 Performance Comparison with Valgrind and
DynamoRIO

We now compare the performance of Pin against Valgrind and Dy-
namoRI10. Valgrind is a popular instrumentation tool on Linux and
is the only binary-level JIT other than Pin that re-allocates regis-
ters. DynamoRIO is generally regarded as the performance leader
in binary-level dynamic optimization. We used the latest release of
each tool for this experiment: Valgrind 2.2.0 [22] and DynamoRIO
0.9.3 [6]). We ran two sets of experiments: one without instrumenta-
tion and one with basic-block counting instrumentation. We imple-
mented basic-block counting by medifying a tool in the Valgrind
package named lackey and a tool in the DynamoRIO package
named countcalls. We show only the integer results in Figure 7
as integer codes are more problematic than floating-point codes in
terms of the slowdown caused by instrumentation.

Figure 7(a) shows that without instrumentation both Pin and
DynamoRIO significantly outperform Valgrind. DynamoRIO is
faster than Pin on gcc, perlbmk and vortex, mainly because Pin
spends more jitting time in these three benchmarks (refer back to
Figure 5(a) for the breakdown) than DynamoRIO, which does not
re-allocate registers. Pin is faster than DynamoRI10 on a few bench-
marks such as crafty and gap possibly because of the advantages
that Pin has in indirect linking (i.e. incremental linking, cloning,
and local hash tables). Overall, DynamoRIO is 12% faster than
Pin without instrumentation. Given that DynamoRIO was primar-
ily designed for optimization, the fact that Pin can come this close
is quite acceptable.

When we consider the performance with instrumentation shown
in Figure 7(b), Pin outperforms both DynamoRIO and Valgrind
by a significant margin: on average, Valgrind slows the applica-
tion down by 8.3 times, DynamoRIO by 5.1 times, and Pin by 2.5
times. Valgrind inserts a call before every basic block’s entry but
it does not automatically inline the call. For DynamoRIO, we use
its low-level API to update the counter inline. Nevertheless, Dy-
namoRIO still has to save and restore the eflags explicitly around
each counter update. In contrast, Pin automatically inlines the call
and performs liveness analysis to eliminate unnecessary eflags
save/restore. This clearly demonstrates a main advantage of Pin: it
provides efficient instrumentation without shifting the burden to the
Pintool writer.
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Figure 7. Performance comparison among Valgrind, DynamoRIO,
and Pin. Eon is excluded because DynamoRIO does not work on
the icc-generated binary of this benchmark. Omitting eon causes
the two arithmetic means of Pin/IA32 slightly different than the
ones shown in Figures 5(a) and 6.
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2Pin: a “copy and annotate” system
+ Lower overhead than the alternatives
+ Close-to-the-metal instrumentation API
- Best for tracking control flow, rather than memory

2 Valgrind: a "disassemble and resynthsize” system
+ Richer APl and shadow memory allows for per-memory word
metadata tracking
- Greater runtime overhead
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problem statement

“What values did a piece of memory
have over time?”

“How does a value propagate
through a running system?”
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Abstract

Strictly limiting the lifetime (i.e. propagation and duration
of exposure) of sensitive data (e.g. passwords) is an impor-
tant and well accepted practice in secure software develop-
ment. Unfortunately, there are no current methods available
for easily analyzing data lifetime, and very little information
available on the quality of today s software with respect to data
lifetime.

We describe a system we have developed for analyzing sen-
sitive data lifetime through whole system simulation called
TaintBochs. TaintBochs tracks sensitive data by "tainting"” it
at the hardware level. Tainting information is then propagated
across operating system, language, and application bound-
aries, permitting analysis of sensitive data handling at a whole
system level.

We have used TaintBochs to analyze sensitive data handling
in several large, real world applications. Among these were
Mozilla, Apache, and Perl, which are used to process millions
of passwords, credit card numbers, etc. on a daily basis. Our
investigation reveals that these applications and the compo-
nents they rely upon take virtually no measures to limit the life-
time of sensitive data they handle, leaving passwords and other
sensitive data scattered throughout user and kernel memory.
We show how a few simple and practical changes can greaily
reduce sensitive data lifetime in these applications.

1 Introduction

Examining sensitive data lifetime can lend valuable
insight into the security of software systems. When
studying data lifetime we are concerned with two pri-
mary issues: how long a software component (¢.g. oper-
ating system, library, application) keeps data it is pro-
cessing alive (i.e. in an accessible form in memory
or persistent storage) and where components propagate
data (c.g. buffers, log files, other components).

As data lifetime increases so does the likelihood of

exposure to an attacker. Exposure can occur by way
of an attacker gaining access to system memory or to
persistent storage (e.g. swap space) to which data has
leaked. Careless data handling also increases the risk
of data exposure via interaction with features such as
logging, command histories, session management, crash
dumps or crash reporting [6], interactive error reporting,
ete.

. . . .
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Unfortunately, even simple questions about data life-
time can be surprisingly difficult to answer in real sys-
tems. The same data is often handled by many different
components, including device drivers, operating system,
system libraries, programming language runtimes, ap-
plications, etc., in the course of a single transaction. This
limits the applicability of traditional static and dynamic
program analysis techniques, as they are typically lim-
ited 1n scope to a single program, often require program
source code, and generally cannot deal with more than
on¢ implementation language.

To overcome these limitations we have developed
a tool based on whole-system simulation called Taint-
Bochs, which allows us to track the propagation of sen-
sitive data at hardware level, enabling us to examine
all places that sensitive data can reside. We examine
systems with TaintBochs by running the entire software
stack, including operating system, application code, etc.
inside a simulated environment. Every byte of system
memory, device state, and relevant processor state is
tagged with a taint-status flag. Data 1s “tainted” if it 1s
considered sensitive.

TaintBochs propagates taint flags whenever their cor-
responding values in hardware are involved in an opera-
tion. Thus, tainted data 1s tracked throughout the system
as it flows through kernel device drivers, user-level GUI
widgets, application buffers, etc. Tainting 1s introduced
when sensitive data enters the system, such as when a
password 1s read from the keyboard device, an applica-
tion reads a particular data set, etc.

We applied TaintBochs to analyzing the lifetime
of password information in a varicty of large, real-
world applications, including Mozilla, Apache, Perl, and
Emacs on the Linux platform. Our analysis revealed that
these applications, the kernel, and the libraries that they
relied upon generally took no steps to reduce data life-
time. Buflers containing sensitive data were deallocated
without being cleared of their contents, leaving sensi-
tive data to sit on the heap indefinitely. Sensitive data
was left in cleartext in memory for indeterminate periods
without good reason, and unnecessary replication caused
excessive copies of password material to be scattered all
over the heap. In the case of Emacs our analysis also
uncovered an interaction between the keyboard history
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Abstract

Strictly limiting the lifetime (i.e. propagation and duration
of exposure) of sensitive data (e.g. passwords) is an impor-
tant and well accepted practice in secure software develop-
ment. Unfortunately, there are no current methods available
for easily analyzing data lifetime, and very little information
available on the quality of today s software with respect to data
lifetime.

We describe a system we have developed for analyzing sen-
sitive data lifetime through whole system simulation called
TaintBochs. TaintBochs tracks sensitive data by "tainting " it
at the hardware level. Tainting information is then propagated
across operating system, language, and application bound-
aries, permitting analysis of sensitive data handling at a whole
system level.

We have used TaintBochs to analyze sensitive data handling
in several large, real world applications. Among these were
Mozilla, Apache, and Perl, which are used to process millions
of passwords, credit card numbers, etc. on a daily basis. Our
investigation reveals that these applications and the compo-
nents they rely upon take virtually no measures to limit the life-
time of sensitive data they handle, leaving passwords and other
sensitive data scattered throughout user and kernel memory.
We show how a few simple and practical changes can greatly
reduce sensitive data lifetime in these applications.

1 Introduction

Examining sensitive data lifetime can lend valuable
insight into the security of software systems. When
studying data lifetime we are concerned with two pri-
mary issues: how long a software component (¢.g. oper-
ating system, library, application) keeps data it is pro-
cessing alive (i.e. in an accessible form in memory
or persistent storage) and where components propagate
data (c.g. buffers, log files, other components).

As data lifetime increases so does the likelihood of

exposure to an attacker. Exposure can occur by way
of an attacker gaining access to system memory or to
persistent storage (e.g. swap space) to which data has
leaked. Careless data handling also increases the risk
of data exposure via interaction with features such as
logging, command histories, session management, crash
dumps or crash reporting [6], interactive error reporting,
cle.
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Unfortunately, even simple questions about data life-
time can be surprisingly difficult to answer in real sys-
tems. The same data is often handled by many different
components, including device drivers, operating system,
system libraries, programming language runtimes, ap-
plications, etc., in the course of a single transaction. This
limits the applicability of traditional static and dynamic
program analysis techniques, as they are typically lim-
ited 1n scope to a single program, often require program
source code, and generally cannot deal with more than
on¢ implementation language.

To overcome these limitations we have developed
a tool based on whole-system simulation called Taint-
Bochs, which allows us to track the propagation of sen-
sitive data at hardware level, enabling us to examine
all places that sensitive data can reside. We examine
systems with TaintBochs by running the entire software
stack, including operating system, application code, etc.
inside a simulated environment. Every byte of system
memory, device state, and relevant processor state is
tagged with a taint-status flag. Data 1s “tainted” if it 1s
considered sensitive.

TaintBochs propagates taint flags whenever their cor-
responding values in hardware are involved 1n an opera-
tion. Thus, tainted data 1s tracked throughout the system
as it flows through kernel device drivers, user-level GUI
widgets, application buffers, etc. Tainting 1s introduced
when sensitive data enters the system, such as when a
password 1s read from the keyboard device, an applica-
tion reads a particular data set, etc.

We applied TaintBochs to analyzing the lifetime
of password information in a varicty of large, real-
world applications, including Mozilla, Apache, Perl, and
Emacs on the Linux platform. Our analysis revealed that
these applications, the kernel, and the libraries that they
relied upon generally took no steps to reduce data life-
time. Buflers containing sensitive data were deallocated
without being cleared of their contents, leaving sensi-
tive data to sit on the heap indefinitely. Sensitive data
was left in cleartext in memory for indeterminate periods
without good reason, and unnecessary replication caused
excessive copies of password matenial to be scattered all
over the heap. In the case of Emacs our analysis also
uncovered an interaction between the keyboard history
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We have augmented Bochs with three capabilities to
produce TaintBochs. First, we provide the ability to
track the propagation of sensitive data through the sys-
tem at a hardware level, 1.¢. tainting. Second, we have
added logging capabilities that allow system state such
as memory and registers at any given time during a sys-
tem’s execution history to be examined. Finally, we de-
veloped an analysis framework that allows information
about OS internals, debug information for the software
that is running, etc. to be utilized in an integrated fashion
to allow casy interpretation of tainting information. This
allows us to trace tainted data to an exact program vari-
able in an application (or the kernel) in the guest, and
code propagating tainting to an exact source file and line
number.

Our basic usage model consists of two phases. First,
we run a simulation in which sensitive data (e.g. com-
ing from the keyboard, network, ete.) is identified as
tainted. The workload consists of normal user interac-
tion, ¢.g. logging into a website via a browser. In the sec-
ond phase, the simulation data 1s analyzed with the anal-
ysis framework. This allows us to answer open-ended
queries about the simulation, such as where tainted data
came from, where it was stored, how it was propagated,
ete.

We will begin by looking at the implementation of

TaintBochs, focusing on modifications to the simulator
to facilitate tainting, logging, ctc. We will then move
on to examine the analysis framework and how it can be
used with other tools to gain a complete picture of data
lifetime in a system.

3.1 Hardware Level Tainting

There are two central issues to implementing hard-
ware level tainting: first, tracking the location of sensi-
tive state in the system, and, sccond, deciding how to

evolve that state over time to keep a consistent picture of

which state 1s sensitive. We will examine cach of these
1SSucs 1n turn.

Shadow Memory To track the location of sensitive

data in TaintBochs, we added another memory, set of

registers, ete. called a shadow memory. The shadow
memory tracks taint status of every byte in the system.
Every operation performed on machine state by the pro-
cessor or devices causes a parallel operation to be per-
formed in shadow memory, ¢.g. copying a word from
register A to location B causes the state in the shadow
register A to be copied to shadow location B. Thus to
determine 1f a byte 1s tainted we need only look in the
corresponding location in shadow memory.
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ity 1§ a conservative approximation, 1.¢. we do not ever
lose track of sensitive data, although some data may be
unnccessarily tainted. Bit granulanity would take mini-
mal additional effort, but we have not yet encountered a
situation where this would noticeably aid our analysis.

For simplicity, TaintBochs only maintains shadow
memory for the guest’s main memory and the [A-327s
cight general-purpose registers. Debug registers, con-
trol registers, SIMD (e.g. MMX, SSE) registers, and
flags are disregarded, as is chip set and /O device state.
Adding the necessary tracking for other processor or
I/O device state (e.g. disk, frame buffer) would be quite
straightforward, but the current implementation is suffi-
cient for many kinds of useful analysis. We are not ter-
ribly concerned about the guest’s ability to launder taint
bits through the processor’s debug registers, for exam-
ple, as our assumption is that software under analysis is
not intentionally malicious.

Propagation Policy We must decide how operations
in the system should affect shadow state. If two registers
A and B are added, and one of them 1s tainted, 1s the
register where the result are stored also tainted? We refer
to the collective set of policies that decide this as the
propagation policy.

In the trivial case where data 1s simply copied, we
perform the same operation in the address space of
shadow memory. So, if the assignment A «— B exe-
cutes on normal memory, then A «— I3 1s also executed
on shadow memory. Consequently, if I3 was tainted then
A 1s now also tainted, and if /3 was not tainted, A is now
also no longer tainted.

The answer is less straightforward when an instruc-
tion produces a new value based on a set of inputs. In
such cases, our simulator must decide on whether and
how to taint the instruction’s output(s). Our choices
must balance the desire to preserve any possibly interest-
ing taints against the need to minimize spurious reports,
1.c. avoid tainting too much data or uninteresting data.
This roughly corresponds to the false negatives vs. false
positives trade-offs made in other taint analysis tools. As
we will see, 1t 1s 1n general impossible to achieve the lat-
ter goal perfectly, so some compromises must be made.

Processor instructions typically produce outputs that
are some function of their inputs. Our basic propaga-
tion policy is simply that if any byte of any input value is
tainted, then all bytes of the output are tainted. This pol-
icy 1s clearly conservative and errs on the side of taint-
ing too much. Interestingly though, with the exception
of cases noted below, we have not yet encountered any
obviously spurious output resulting from our policy.
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We have augmented Bochs with three capabilities to
produce TaintBochs. First, we provide the ability to
track the propagation of sensitive data through the sys-
tem at a hardware level, 1.¢. tainting. Second, we have
added logging capabilities that allow system state such
as memory and registers at any given time during a sys-
tem’s execution history to be examined. Finally, we de-
veloped an analysis framework that allows information
about OS internals, debug information for the software
that is running, etc. to be utilized in an integrated fashion
to allow casy interpretation of tainting information. This
allows us to trace tainted data to an exact program vari-
able in an application (or the kernel) in the guest, and
code propagating tainting to an exact source file and line
number.

Our basic usage model consists of two phases. First,
we run a simulation in which sensitive data (e.g. com-
ing from the keyboard, network, ete.) is identified as
tainted. The workload consists of normal user interac-
tion, ¢.g. logging into a website via a browser. In the sec-
ond phase, the simulation data 1s analyzed with the anal-
ysis framework. This allows us to answer open-ended
queries about the simulation, such as where tainted data
came from, where it was stored, how it was propagated,
ete.

We will begin by looking at the implementation of

TaintBochs, focusing on modifications to the simulator
to facilitate tainting, logging, ctc. We will then move
on to examine the analysis framework and how it can be
used with other tools to gain a complete picture of data
lifetime in a system.

3.1 Hardware Level Tainting

There are two central issues to implementing hard-
ware level tainting: first, tracking the location of sensi-
tive state in the system, and, sccond, deciding how to

evolve that state over time to keep a consistent picture of

which state 1s sensitive. We will examine cach of these
1SSucs 1n turn.

Shadow Memory To track the location of sensitive

data in TaintBochs, we added another memory, set of

registers, ete. called a shadow memory. The shadow
memory tracks taint status of every byte in the system.
Every operation performed on machine state by the pro-
cessor or devices causes a parallel operation to be per-
formed in shadow memory, ¢.g. copying a word from
register A to location B causes the state in the shadow
register A to be copied to shadow location B. Thus to
determine 1f a byte 1s tainted we need only look in the
corresponding location in shadow memory.
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ity 1§ a conservative approximation, 1.¢. we do not ever
lose track of sensitive data, although some data may be
unnccessarily tainted. Bit granulanity would take mini-
mal additional effort, but we have not yet encountered a
situation where this would noticeably aid our analysis.

For simplicity, TaintBochs only maintains shadow
memory for the guest’s main memory and the [A-327s
cight general-purpose registers. Debug registers, con-
trol registers, SIMD (e.g. MMX, SSE) registers, and
flags are disregarded, as is chip set and /O device state.
Adding the necessary tracking for other processor or
I/O device state (e.g. disk, frame buffer) would be quite
straightforward, but the current implementation is suffi-
cient for many kinds of useful analysis. We are not ter-
ribly concerned about the guest’s ability to launder taint
bits through the processor’s debug registers, for exam-
ple, as our assumption is that software under analysis is
not intentionally malicious.

Propagation Policy We must decide how operations
in the system should affect shadow state. If two registers
A and B are added, and one of them is tainted, 1s the
register where the result are stored also tainted? We refer
to the collective set of policies that decide this as the
propagation policy.

In the trivial case where data 1s simply copied, we
perform the same operation in the address space of
shadow memory. So, if the assignment A «— B exe-
cutes on normal memory, then A «— I3 1s also executed
on shadow memory. Consequently, if I3 was tainted then
A 1s now also tainted, and if /3 was not tainted, A is now
also no longer tainted.

The answer is less straightforward when an instruc-
tion produces a new value based on a set of inputs. In
such cases, our simulator must decide on whether and
how to taint the instruction’s output(s). Our choices
must balance the desire to preserve any possibly interest-
ing taints against the need to minimize spurious reports,
1.c. avoid tainting too much data or uninteresting data.
This roughly corresponds to the false negatives vs. false
positives trade-offs made in other taint analysis tools. As
we will see, 1t 1s 1n general impossible to achieve the lat-
ter goal perfectly, so some compromises must be made.

Processor instructions typically produce outputs that
arc some function of their inputs. Our basic propaga-
tion policy 1s simply that if any byte of any input value is
tainted, then all bytes of the output are tainted. This pol-
icy 1s clearly conservative and errs on the side of taint-
ing too much. Interestingly though, with the exception
of cases noted below, we have not yet encountered any
obviously spurious output resulting from our policy.
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Propagation Problems There are a number of quite
common situations where the basic propagation policy
presented before either fails to taint interesting informa-
tion, or taints more than strictly necessary. We have dis-
covered the following so far:

o Lookup Tables. Sometimes tainted values are used

by instructions as indexes into non-tainted memory
(1.c. as an index into a lookup table). Since the tainted
value itself 1s not used 1n the final computation, only
the lookup value it points to, the propagation pol-
icy presented carlier would not classify the output as
tainted.

This situation anses routinely. For example, Linux
routincly remaps keyboard device data through a
lookup table before sending keystrokes to user pro-
grams. Thus, user programs never directly see the
data read in from the keyboard device, only the non-
tainted values they index in the kernel’s key remap-
ping table.

Clearly this 1s not what we want, so we aug-
mented our propagation policy to handle tainted in-
dexes (i.c. tainted pointers) with the following rule:
if any byte of any input value that is involved in the
address computation of a source memory operand is
tainted, then the output is tainted, regardless of the
taint status of the memory operand that is referenced.
Constant Functions. Tainted values are sometimes
used in computations that always produce the same
result. We call such computations constant functions.
An example of such a computation might be the fa-
miliar IA-32 idiom for clearing out a register: xcr
eax, eax. After execution of this instruction, eax
always holds value 0, regardless of its original value.

For our purposes, the output of constant functions
never pose a security risk, even with tainted inputs,
since the input values are not derivable from the out-
put. In the xoxr example above, it 1s no less the sit-
uation as if the programmer had instead written mowv
eax, 0.Inthe xcor case, our naive propagation pol-
icy taints the output, and in the mov case, our prop-
agation policy does not taint the output (since imme-
diate inputs are never considered tainted).

Clearly, our desire is to never taint the output of
constant functions. And while this can clearly be
done for special cases like xor eax, eax orsim-
ilar sequences like sub eax, eax, this cannot be
done in general since the general case (of which the
xor and sub examples are merely degenerate mem-
bers) is an arbitrary sequence of instructions that ul-
timately compute a constant function. For example,
assuming eax 1s initially tainted, the sequence:

mov ebx, eax ; ebx eax

v p s 4 L~ i v
shl eax, 1 ; eax 2 * eax
XOr ebx, eax ; ebx 0

Always computes (albeit circuitously) zero for ebx,
regardless of the original value of eax. By the time
the instruction simulation reaches the xor, 1t has no
knowledge of whether its operands have the same
value because of some deterministic computation or
through simple chance; it must decide, therefore, to
taint its output.

One might imagine a variety of schemes to address
this problem. Our approach takes advantage of the
semantics of tainted values. For our research, we are
interested in tainted data representing secrets like a
user-typed password. Therefore, we simply define by
fiat that we are only interested in taints on non-zero
values. As a result, any operation that produces a zero
output value never taints its output, since zero outputs
are, by definition, uninteresting.

This simple heuristic has the consequence that

constant functions producing nonzero values can still
be tainted. This has not been a problem 1n practice
since constant functions themselves are fairly rare,
except for the degencrate ones that clear out a reg-
ister. Morcover, tainted inputs find their way into a
constant function even more rarely, because tainted
memory generally represents a fairly small fraction
of the guest’s overall memory.
One-way Functions. Constant functions are an inter-
esting special case of a more general class of compu-
tations we call one-way functions. A one-way func-
tion is characterized by the fact that its input is not
casily derived from its output. The problem with one-
way functions is that tainted input values generally
produce tainted outputs, just as they did for constant
functions. But since the output value gives no prac-
tical information about the computation’s inputs, it
1s generally uninteresting to flag such data as tainted
from the viewpoint of analyzing information leaks,
since no practical security risk exists.

A concrete example of this situation occurs in
Linux, where keyboard input is used as a source of
entropy for the kemnel’s random pool. Data collected
into the random pool 1s passed through various mix-
ing functions, which include cryptographic hashes
like SHA-1. Although derivatives of the original key-
board input are used by the kernel when it extracts
entropy from the pool, no practical information can
be gleaned about the original keyboard input from
looking at the random number outputs (at least, not
easily).

Our system does not currently try to remove
tainted outputs resulting from onc-way functions,
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experiment: mozilla

4.1.1 Mouzilla

In our first expennment we tracked a user-input password
in Mozlla during the login phase of the Yahoo Mail
website,

Mozilla was a particularly interesting subject not only
because of 1ts real world impact, but also because 1ts
size. Moazilla 1s a massive application (~3.7 mullion
lines of code) written by many different people, 1t also
has a huge number of dependencies on other compo-
nents (e.g. GUI toolkats).

For our experiment, we began by a booting a Linux®
guest inside TamntBochs. We then logged 1n as an unpriv-
ileged user, and started X with the twm window man-
ager. Inside X, we started Mozilla and brought up the
webpage mail. yahoo. com, where we entered a user
name and password 1n the login form. Before entening
the password, we turned on TaintBoch’s keyboard taint-
ing, and afterward we turned 1t back ofl. We then closed
Mouzilla, logged out, and closed TaintBochs.

o Kernel random number generator. The Linux ker-

nel has a subsystem that generates cryptographically
sccure random numbers, by gatherning and mixing en-
tropy from a number of sources, including the key-
board. It stores keyboard input temporanly 1n a cir-
cular queue for later batch processing. It also uses
a global vanable last.scanccde to keep track of
the previous key press; the keyboard dniver also has a
similar vanable prev.scancoede.

XFree86 event queue. The X server stores user-mnput
cvents, imncluding keystrokes, 1n a circular queue for
later dispatch to X clients.

Kernel socket buffers. In our experiment, X relays
keystrokes to Mozilla and 1ts other clients over Unix
domain sockets using the writewv system call. Each
call causes the kemnel to allocate a sk ouff socket
structure to hold the data.

Mozilla strings. Mozilla, written in C++, uses a num-
ber of related string classes to process user data. It
makes no attempt to curb the lhifetime of sensitive
data.

Kernel tty buffers. When the user types keyboard
characters, they go mto a struct tty.struct
“flip bufler” directly from interrupt context. (A flip
bufier 1s divided 1nto halves, one used only for read-
ing and the other used only for wrniting. When data
that has been written must be read, the halves are
“flipped™ around.) The key codes are then copied 1nto
a tty, which X reads.
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Abstract

This paper evaluates pointer tainting, an incarnation of Dy-
namic Information Flow Tracking (DIFT), which has re-
cently become an important technique in system security.
Pointer tainting has been used for two main purposes: de-
tection of privacy-breaching malware (e.g., trojan keylog-
gers obtaining the characters typed by a user), and detec-
tion of memory corruption attacks against non-control data
(e.g., a buffer overflow that modifies a user’s privilege level).
In both of these cases the attacker does not modify control
data such as stored branch targets, so the control flow of
the target program does not change. Phrased differently, in
terms of instructions executed, the program behaves ‘nor-
mally’. As a result, these attacks are exceedingly difficult to
detect. Pointer tainting is considered one of the only methods
for detecting them in unmodified binaries. Unfortunately, al-
most all of the incarnations of pointer tainting are flawed.
In particular, we demonstrate that the application of pointer
tainting to the detection of keyloggers and other privacy-
breaching malware is problematic. We also discuss whether
pointer tainting is able to reliably detect memory corrup-
tion attacks against non-control data. We found that pointer
tainting generates itself the conditions for false positives. We
analyse the problems in detail and investigate various ways
to improve the technique. Most have serious drawbacks in
that they are either impractical (and incur many false pos-
itives still), and/or cripple the technique’s ability to detect
attacks. In conclusion, we argue that depending on architec-
ture and operating system, pointer tainting may have some
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value in detecting memory corruption attacks (albeit with
false negatives and not on the popular x86 architecture), but
it is fundamentally not suitable for automated detecting of
privacy-breaching malware such as keyloggers.

Categories and Subject Descriptors D.4.6 |Security and
Protection]: Invasive software

General Terms Security, Experimentation

Keywords dynamic taint analysis, pointer tainting

1. Introduction

Exploits and trojans allow attackers to compromise ma-
chines in various ways. One way to exploit a machine is
to use techniques like buffer overflows or format string at-
tacks to divert the flow of execution to code injected by the
attacker. Alternatively, the same exploit technigues may at-
tack non-control data [Chen 2005b]; for instance a buffer
overflow that modifies a value in memory that represents a
user’s identity, a user’s privilege level, or a server configura-
tion string. Non-control data attacks are even more difficult
to detect than attacks that divert the control flow. After all,
the program does not execute any foreign code, does not

jump to unusual places, and does not exhibit strange sys-

tem call patterns or any other tell-tale signs that indicate that
something might be wrong.

While protection for some of these attacks may be pro-
vided if we write software in type-safe languages [Jim 2002],
compile with specific compiler extensions [Castro 2006,
Akritidis 2008 ], or verify with formal methods [Elphinstone
2007], much of the system software in current use is writ-
ten in C or C++ and often the source of the software is not
available, and recompilation is not possible.

Worse, even with the most sophisticated languages, it is
difficult to stop users from installing trojans. Often trojans
masquerade as useful programs, like pirated copies of popu-
lar applications, games, or “security’-tools, with keylogging,
privacy theft and other malicious activities as hidden fea-
tures. No exploit is needed to compromise the system at all.
Once inside, the malware may be used to join a spam botnet,
damage the system, attack other sites, or stealthily spy on a
user. Again, stealthy spies are harder to detect than ‘loud’
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programs that damage systems, or engage in significant net-
work activity. The trojan spyware, installed by the user, may
use legitimate APIs to obtain and store the characters that
are typed in by the users (or data in files, buffers, or on the
network). From a system’s perspective, the malware is not
doing anything ‘wrong’.

In light of the above, we distinguish between attacks that
divert the control flow of a program and those that do not.
Control diversion typically means that a pointer in a process
1s manipulated by an attacker so that when it is dereferenced,
the program starts executing instructions different from the
ones it would normally execute at that point. Non conirol di-
verting attacks, on the other hand, include memory corrup-
tion attacks against non-control data and privacy breaching
malware like keyloggers and sniffers. Memory corruption at-
tacks against non-control data manipulate data values that
are not directly related to the flow of control; for instance, a
value that represents a user’s privilege level, or the length in
bytes of a reply buffer. The attack itself does not lead to un-
usual code execution. Rather, it leads to elevated privileges,
or unusual replies. The same is true for privacy breaching
malware like sniffers and trojan keyloggers.

Pointer tainting as advertised is attractive. 1t is precisely
these difficult to detect, stealthy non-control-diverting at-
tacks that are the focus of pointer tainting [Chen 2005a]. At
the same time, the technique works against control-diverting
attacks also. We will discuss pointer tainting in more detail
in later sections. For now, it suffices to define it as a form
of dynamic information flow tracking (DIFT) [Suh 2004]
which marks the origin of data by way of a taint bit in a
shadow memory that is inaccessible to software. By track-
ing the propagation of tainted data through the system (e.g.,
when tainted data is copied, but also when tainted pointers
are dereferenced), we see whether any value derived from
data from a tainted origin ends up in places where it should
never be stored. For instance, we shall see that some projects
use it to track the propagation of keystroke data to ensure that
untrusted and unauthorised programs do not receive it [Yin
2007]. By implementing pointer tainting in hardware [Dal-
ton 2007], the overhead is minimal.

Pointer tainting is very popular because (a) it can be ap-
plied to unmodified software without recompilation, and
(b) according to its advocates, it incurs hardly (if any) false
positives, and (c) it is assumed to be one of the only (if
not the only) reliable techniques capable of detecting both
control-diverting and non-control-diverting attacks with-
out requiring recompilation. Pointer tainting has become a
unique and extremely valuable detection method especially
due to its presumed ability to detect non-control-diverting
attacks. As mentioned earlier, non-control-diverting attacks
are more worrying than attacks that divert the control flow,
because they are harder to detect. Common protection
mechanisms like address space randomisation and stack-
guard [Bhatkar 2005, Cowan 1998] present in several mod-

user. Again, stealthy spies are harder to detect than ‘loud’

ern operating systems are ineffective against this type of
attack. The same is true for almost all forms of system call
monitoring [Provos 2003, Giffin 2004]. As a result, some
trojan keyloggers have been active for years (often unde-
tected). In one particularly worrying case, a keylogger har-
vested over 500,000 login details for online banking and
other accounts [Raywood 2008]. At the same time, the con-
sequences of a successful non-control-diverting attack may
be as severe as with a control-diverting attack. For instance,
passwords obtained by a keylogger often give attackers full
control of the machines. The same is true for buffer over-
flows that modify a user’s privilege level.

However, pointer tainting is not working as advertised.
Inspired by a string of publications about pointer tainting
in top venues [Chen 2005a;b, Yin 2007, Egele 2007, Dalton
2007, Yin 2008, Venkataramani 2008, Dalton 2008], several
of which claim zero false positives, we tried to build a key-
logger detector by means of pointer tainting. However, what
we found is that for privacy-breaching malware detection,
the method is flawed. It incurs both false positives and neg-
atives. The false positives appear particularly hard to avoid.
There is no easy fix. Further, we found that almost all exist-
ing applications of pointer tainting to detection of memory
corruption attacks are also problematic, and none of them
are suitable for the popular x86 architecture and Windows
operating system.

In this paper, we analyse the fundamental limitations of
the method when applied to detection of privacy-breaching
malware, as well as the practical limitations in current ap-
plications to memory corruption detection. Often, we will
see that the reason is that ‘fixing the method is breaking it’:
simple solutions to overcome the symptoms render the tech-
nique vulnerable to false positives or false negatives.

Others have discussed minor issues with projects that use
pointer tainting [Dalton 2006], and most of these have been
addressed in later work [Dalton 2008]. To the best of our
knowledge, nobody has investigated the technique in detail,
nobody has shown that it does not work against keyloggers,
and we are the first to report the complicated problems with
the technique that are hard to overcome. We are also the first
to evaluate the implications experimentally.

In summary, the contributions of this paper are:

1. an in-depth analysis of the problems of pointer tainting
on real systems which shows that it does not work against
malware spying on users’ behaviour, and is problematic
in other forms also;

ra

. an analysis and evaluation of all known fixes to the prob-
lems that shows that they all have serious shortcomings.

We emphasise that this paper is not meant as an attack
on existing publications. In our opinion, previous papers
underestimated the method’s problems. We hope that our
work wlll help others avoid making the mistakes we made
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Figure 2. The taintedness of the processes constituting %% of all context switches. In this and all similar plots the following explanation
holds. The x-axis 1s divided into scheduling intervals, spanning 50 scheduling operations cach. Time starts when taint 1s introduced 1n the
system. In an interval, several processes are scheduled. For each of these, we take a random sample from the interval to form a datapoint. So,
even if gzip 1s scheduled multiple imes 1n an interval, it has only one datapoint. A datapoint consists of two small boxes drawn on top of
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one represents all other registers. We use three colours: lightgrey means the registers are clean, darkgrey means less than half of considered
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with Time-Traveling Virtual Machines

3 Time-traveling virtual machines

A time-traveling virtual machine should have two capa-
bilities. First, it should be able to reconstruct the com-
plete state of the virtual machine at any point in a run,
where a run is defined as the time from when the virtual
machine was powered on to the last instruction it exe-
cuted. Second, it should be able to start from any point
in a run and from that point replay the same instruction
stream that was executed during the original run from
that point. This section describes how TTVM achieves
these capabilities through a combination of logging, re-
play, and checkpointing.

3.1 Logging and replaying a VM

The foundational capability in TTVM is the ability to re-
play a run from a given point in a way that matches the
original run instruction for instruction. Replay causes the
virtual machine to transition through the same states as
it went through during the original run; hence replay en-
ables one to reconstruct the complete state of the virtual
machine at any point in the run. TTVM uses the ReVirt
logging/replay system to provide this capability [9]. This
section briefly summarizes how ReVirt logs and replays
the execution of a virtual machine.

A virtual machine can be replayed by starting
from a checkpoint, then replaying all sources of non-
determinism [5, 9]. For UML, the sources of non-
determinism are external input from the network, key-
board, and real-time clock and the timing of virtual inter-
rupts. The VMM replays network and keyboard input by
logging the calls that read these devices during the origi-
nal run and regenerating the same data during the replay
run. Likewise, we configure the CPU to cause reads of
the real-time clock to trap to the VMM, where they can
be logged or regenerated.

To replay a virtual interrupt, ReVirt logs the instruc-
tion in the run at which it was delivered and re-delivers
the interrupt at this instruction during replay. This point
is identified uniquely by the number of branches since
the start of the run and the address of the interrupted in-
struction [19]. ReVirt uses a performance counter on the
Intel Pentium 4 CPU to count the number of branches
during logging, and it uses the same performance counter
and instruction breakpoints to stop at the interrupted in-
struction during replay. Replaying interrupts enables
ReVirt to replay the scheduling order of multi-threaded
guest operating systems and applications, as long as the
VMM exports the abstraction of a uniprocessor virtual
machine [22]. Researchers are investigating ways to sup-
port replay on multiprocessors [29].

3.2 Host device drivers in the guest OS

In general, VMMs export a limited set of virtual devices.
Some VMMs export virtual devices that exist in hard-
ware (e.g., VMware Workstation exports an emulated
AMD Lance Ethemet card); others (like UML) export
virtual devices that have no hardware equivalent. Export-
ing a limited set of virtual devices to the guest OS is usu-
ally considered a benefit of virtual-machine systems, be-
cause it frees guest OSs from needing device drivers for
myriad host devices [26]. However, when using virtual
machines to debug operating systems, the limited set of
virtual devices prevents programmers from using and de-
bugging drivers for real devices; programmers can only
debug the architecture-independent portion of the guest
OS. There are two ways to address this limitation and en-
able the programmer to run and debug real device drivers
in a guest OS. With both strategies, real device drivers
can be included in the guest OS without being modified
or re-compiled.

The first way to run a real device driver in the guest
OS is for the VMM to provide a software emulator for
that device. The device driver issues the normal set of
I/O instructions: IN/OUT instructions, memory-mapped
/O, DMA commands, and interrupts. The VMM traps
these privileged instructions and forwards them to/from
the software device emulator. With this strategy, ReVirt
can log and replay device driver code in the same way it
logs and replays the rest of the guest OS. If one runs the
VMM’s software device emulator above ReVirt's log-
ging system (and above the checkpoint system described
in Section 3.3), ReVirt will guide the emulator and device
driver code through the same instruction sequence during
replay as they executed during logging. While this first
strategy fits in well with the existing ReVirt system, it
only works if one has an accurate software emulator for
the device whose driver one wishes to debug.

We modified UML to provide a second way to run real
device drivers in the guest OS, which works even when
no software emulator exists for the device of interest.
With this strategy, the VMM traps and forwards the priv-
ileged I/O instructions and DMA requests issued by the
guest OS device driver to the actual hardware. The pro-
grammer specifies which devices UML can access, and
the VMM enforces the proper I/O port space and mem-
ory access for the device.

This second strategy requires extensions to enable Re-
Virt to log and replay the execution of the device driver.
Whereas the first strategy placed the device emulator
above the ReVirt logging layer, the second strategy for-
wards driver actions to the actual hardware device. Be-
cause this device may not be deterministic, ReVirt must
log any information sent from the device to the driver.

Specifically, ReVirt must log and replay the data returned

“Replay causes the virtual
machine to transition through
the same states as it went
through during the original run”

replayed by st
checkpoint, replaying all
sources of filondeterminism |...}
the network, keyboard, clock,
and timing of interrupts”
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tons. Valgrind provides an evenis system 10 describe such changes.

Let us first consider the accesses done by system calls. All sys-
tem calls access registers: they read their arguments from registers
and/or memory, and they write their return value to a register. Many
system calls also access user-mode memory via pointer arguments,
e.g. settimeofday is passed pointers to two structs which it reads
from, and gettimeofday fills in two structs with data. Knowing
which registers and memory locations are accessed by every sys-
tem call is difficult because there are many system calls (around 300
for Linux), some of which have tens or hundreds of sub-cases, and
there are many differences across platforms. Several things must
be known for each system call: how many arguments it takes, each
argument’s size, which ones are pointers (and which of those can
be NULL), which ones indicate buffer lengths, which ones are null-
terminated strings, which ones are not read in certain cases (e.g. the
third argument of open is only read if the second argument has cer-
tain values), and the sizes of various types (e.g. struct timeval
used by gettimeofday and settimeofday).

Valgrind does not encode this information about system calls
in its IR, because there are too many system calls and too much
variation across platforms to do so cleanly. Instead it provides the
events system to inform tools about register and memory accesses

*In comparison, chaining improved Strata’s basic slow-down factor from
22.1x to 4.1x, because dispatching takes about 250 cycles [24]. Valgrind's
slow-down even without chaining is 4.3x.

in tricky cases, with a small amount of help from the programmer
all stack switches can be detected.

The remaining events in Table 1 inform tools about allocations
done at program start-up and via system calls.

3.13 Function Replacement and Function Wrapping

Valgrind supports function replacement, i.e. it allows a tool to
replace any function in a program with an alternative function.
A replacement function can also call the function it has replaced.
This allows function wrapping, which is particularly useful for
inspecting the arguments and return value of a function.

3.14 Threads

Threads pose a particular challenge for shadow value tools. The
reason is that loads and stores become non-atomic: each load/store
translates into the original load/store plus a shadow load/store. On a
uni-processor machine, a thread switch might occur between these
two operations. On a multi-processor machine, concurrent memory
accesses to the same memory location may complete in a different
order to their corresponding shadow memory accesses. It is unclear
how to best deal with this, as a fine-grained locking approach would
likely be slow.

To sidestep this problem, Valgrind serialises thread execution
with a thread locking mechanism. Only the thread holding the lock
can run, and threads drop the lock before they call a blocking

| Req. Valgrind events Called from

Memcheck callbacks |

R4 pre_reg_read, post_reg_write
pre_mem_read{,_asciiz}
pre_mem_write, post_mem_write

Every system call wrapper
Many system call wrappers
Many system call wrappers

check_reg_is_defined, make reg defined
check_mem_is_defined{,_asciiz}
check_mem_is_addressable, make_mem_defined

RS new_mem_startup

Valgrind's code loader

make_mem_defined

R6 new_mem_mmap, die_mem_munmap
new_mem_brk, die_mem_brk
COpy_mem_mremap

brk wrapper
mremap wrapper

mmap wrapper, munmap wrapper make_mem_defined, make_mem_nocaccess

make_mem_undefined, make_mem_noaccess
copy_range

R7 new_mem_stack, die_mem_stack

Instrumentation of SP changes

make_mem_undefined, make_mem_noaccess

Table 1. Valgrind events, their trigger locations, and Memcheck’s callbacks for handling them.

system call,” or after they have been running for a while (100,000
code blocks). The lock is implemented using a pipe which holds a
single character; each thread tries to read the pipe, only one thread
will be successful, and the others will block until the running thread
relinquishes the lock by putting a character back in the pipe. Thus
the kernel still chooses which thread is to run next, but Valgrind
dictates when thread-switches occur and prevents more than one
thread from running at a time.

This is the third thread serialisation mechanism that has been
used in Valgrind, and is by far the most robust. The firstone [18, 15]
involved Valgrind providing a serialised version of the 1ibpthread
library. This only worked with programs using pthreads. It also
caused many problems because on Linux systems, glibc and the
pthreads library are tightly bound and interact in various ways "‘un-
der the covers” that are difficult to replicate.” The second one was
more like the current one, but was more complex, requiring extra
kernel threads to cope with blocking I/O.

This serialisation is a unique Valgrind feature not shared by
other DBI frameworks. It has both pros and cons: it means that Val-
grind tools using shadow memory can ignore the atomicity issue.
However, as multi-processor machines become more popular, the
resulting performance shortcomings for multi-threaded programs
will worsen. How to best overcome this problem remains an open
research question.

3.15 Signals

PR ———

the hash is recomputed and checked, and if it does not match, the
block is discarded and the code retranslated.

This has a high run-time cost. Therefore, by default Valgrind
only uses this mechanism for code that is on the stack. This is
enough to handle the trampolines that some compilers (e.g. GCC)
put on the stack when running nested functions, which we have
found to be the main cause of self-modifying code.” This minimises
the cost, as only code on the stack is slowed down. The mechanism
can also be turned off altogether or tumed on for every block.

Valgrind also provides another mechanism for handling self-
modifying code—a client request which tells it to discard any
translations of instructions in a certain address range. It is most
useful for dynamic code generators such as JIT compilers.

4. Valgrind’s Shadow Value Support

This section describes how the features described in the previous
section support all nine shadow value requirements. Because these
requirements are a superset of most DBA tools’ requirements,
Valgrind supports most conceivable DBA tools.

R1: Provide shadow registers. Valgrind has three noteworthy
features that make shadow registers easy to use. First, shadow
registers are first-class entities: (a) space is provided for them in
the ThreadState, (b) they can be accessed just as easily as guest
registers, (¢) they can be manipulated and operated on in the same
ways. This makes complex shadow operations code natural and
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“Valgrind serialises thread
execution with a thread locking
mechanism. Only the thread
holding the lock can run,”

“The kernel still chooses which
thread is to run next, but Valgrind
dictates when thread-switches
occur and prevents more than one
thread from running at a time.”

“How to best overcome this
problem remains an open
research question.”
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Multithreaded programming is difficult and error prone. It is easy to make a mistake in
synchronization that produces a data race, yet it can be extremely hard to locate this mistake
during debugging. This article describes a new tool, called Eraser, for dynamically detecting
data races in lock-based multithreaded programs. Eraser uses binary rewriting techniques to
monitor every shared-memory reference and verify that consistent locking behavior is ob-
served. We present several case studies, including undergraduate coursework and a multi-
threaded Web search engine, that demonstrate the effectiveness of this approach.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Pro-
gramming—parallel programming; D.2.5 [Software Engineering]: Testing and Debugging—
debugging aids; monitors; tracing; D.4.1 [Operating Systems]: Process Management—
concurrency; deadlock; multiprocessing/multiprogramming; mutual exclusion; synchronization

General Terms: Algorithms, Experimentation, Reliability

Additional Key Words and Phrases: Binary code modification, multithreaded programming,
race detection

1. INTRODUCTION

Multithreading has become a common programming technique. Most com-
mercial operating systems support threads, and popular applications like
Microsoft Word and Netscape Navigator are multithreaded.

An earlier version of this article appeared in the Proceedings of the 16th ACM Symposium on
Operating System Principles, St. Malo, France, 1997.

Authors’ addresses: S. Savage and T. Anderson, Department of Computer Science and
Engineering, University of Washington, Box 352350, Seattle, WA 98195; email:
savage@cs.washington.edu; M. Burrows, G. Nelson, and P. Sobalvarro, Systems Research
Center, Digital Equipment Corporation, 130 Lytton Avenue, Palo Alto, CA 94301.
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set C(v) := C(v) N locks held(t);
if C(v) :={ }, then issue a warning.
On each write of v by thread ¢,
set C(v) := C(v) N write_locks_held(t);
if C(v) = { }, then issue a warning.

That is, locks held purely in read mode are removed from the candidate
set when a write occurs, as such locks held by a writer do not protect
against a data race between the writer and some other reader thread.

3. IMPLEMENTING ERASER

Eraser is implemented for the Digital Unix operating system on the Alpha
processor, using the ATOM [Srivastava and Eustace 1994] binary modifica-
tion system. Eraser takes an unmodified program binary as input and adds
instrumentation to produce a new binary that is functionally identical, but
includes calls to the Eraser runtime to implement the Lockset algorithm.

To maintain C(v), Eraser instruments each load and store in the pro-
gram. To maintain lock_held(t) for each thread ¢, Eraser instruments each
call to acquire or release a lock, as well as the stubs that manage thread
initialization and finalization. To initialize C(v) for dynamically allocated
data, Eraser instruments each call to the storage allocator.

Eraser treats each 32-bit word in the heap or global data as a possible
shared variable, since on our platform a 32-bit word is the smallest
memory-coherent unit. Eraser does not instrument loads and stores whose
address mode is indirect off the stack pointer, since these are assumed to be
stack references, and shared variables are assumed to be in global locations
or in the heap. Eraser will maintain candidate sets for stack locations that
are accessed via registers other than the stack pointer, but this is an
artifact of the implementation rather than a deliberate plan to support
programs that share stack locations between threads.

When a race is reported, Eraser indicates the file and line number at
which it was discovered and a backtrace listing of all active stack frames.
The report also includes the thread ID, memory address, type of memory
access, and important register values such as the program counter and
stack pointer. When used in conjunction with the program’s source code, we
have found that this information is usually sufficient to locate the origin of
the race. If the cause of a race is still unclear, the user can direct Eraser to
log all the accesses to a particular variable that result in a change to its
candidate lock set.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

“Eraser instruments
each call to acquire or
release a lock”
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Abstract

Execution replay of virtual machines is a technique which has many
important applications, including debugging, fault-tolerance, and
security. Execution replay for single processor virtual machines is
well-understood, and available commercially. With the advance-
ment of multi-core architectures, however, multiprocessor virtual
machines are becoming more important. Our system, SMP-ReVirt,
is the first system to log and replay a multiprocessor virtual ma-
chine on commodity hardware. We use hardware page protection
to detect and accurately replay sharing between virtual cpus of a
multi-cpu virtual machine, allowing us to replay the entire oper-
ating system and all applications. We have tested our system on a
variety of workloads, and find that although sharing under SMP-
ReVirt is expensive, for many workloads and applications, includ-
ing debugging, the overhead is acceptable.

Categories and Subject Descriptors C.4 [Computer Systems Or-
ganization): Performance of Systems — Measurement Techniques;
D.4.1 [Operating Systems): Process Management — multiprocess-
ing

General Terms Design, Measurement, Performance, Reliability,
Security

Keywords ReVirt, execution replay, multithreading, determin-
ism, race recording, multiprocessors, virtual machines, Xen, direct
memory access, SPLASH, page protections

1. Introduction

Execution replay gives the ability to reconstruct the past execution
of a system. In conjunction with a checkpoint of the system state, it
gives the ability to reconstruct the entire state at any point in time
over the replay interval. This ability is useful for several different
applications. For debugging, it allows a programmer to inspect the
execution and state of a particular run of a system, even in the face
of non-determinism[9, 14, S, 8]. For security, it allows a system ad-
ministrator to go back and inspect the entire state of the system be-
fore, during, and after an attack, allowing the system administrator
to determine how the attack took place and observe the attacker’s
activities[6]. For fault tolerance, execution replay allows the state

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
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of a system just before a crash to be recovered without the need
for frequent checkpoints[7, 4, 11]. Recent work has also used exe-
cution replay to efficiently collect and store software architectural
traces[19].

A simple way to apply execution replay to a wide range of
software is to implement execution replay for virtual machines[4].
Running software in a virtual machine capable of being replayed
allows a user to take advantage of execution replay without needing
to modify software running inside the virtual machine. It also has
the advantage of being able to use execution replay on an operating
system kernel.

In order to implement execution replay in a virtual machine,
any non-deterministic event that affects the virtual machine’s state
must be recorded. This state includes all memory allocated to the
virtual machine, the processor registers, and the disk. For a single
processor system, non-deterministic events include any external in-
put (such as keyboard, mouse, or network), as well as the timing
of non-deterministic events like interrupts. The techniques for re-
playing single processor systems are well understood, and are even
available commercially[19].

With the increasing prevalence of multi-core processors, ex-
ecution replay on multiprocessor systems has become more im-
portant. Implementing replay for multiprocessor systems is much
more challenging than single processor systems, however. Because
writes on one processor can affect reads on another processor, the
results of memory races must be recorded and replayed. Existing
solutions require modification to software, or massive modifica-
tions to hardware.

We have built a system, SMP-ReVirt, which is the first system
to log and replay multiprocessor virtual machines on commodity
hardware. In order to detect and replay the results of memory races,
we use hardware page protections, available on all modern desktop
and server processors. This technique allows us to log and replay
unmodified multiprocessor systems, including multiprocessor ker-
nels running inside of a virtual machine.

Logging makes sharing more expensive, but the end-to-end
impact on performance varies widely depending on the workload.
For some applications it is prohibitively expensive, while for others
there is little impact.

This paper explores execution replay for multiprocessor virtual
machines. Section 2 introduces the basic concepts, terms, and re-
quirements of execution replay for single processor virtual ma-
chines. It then discusses the complications that shared-memory sys-
tems introduce, and describes techniques to address them. Section
3 describes the research prototype we built using the Xen hyper-
visor, describing the implementation of the general principles in
more detail, and describing some of the technical issues involved.
In Section 4, we evaluate our research prototype, investigating the
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If b and c are unrelated, we say that the constraints above are
over-constrained, because they cause the replay system to run more
strictly than necessary: either P, must wait until P, reaches b
(although the data was ready at a), or P, stops and waits at ¢
(although it is not necessary to stop and wait until d), or both. Over-
constraining reduces the potential parallelism during a replay run,
but can be taken advantage of to reduce the number of constraints
or simplify logging.

Suppose instead that @ and d are writes to one area of memory,
and b and ¢ were writes to a second area of memory. In this case,
b — ¢ would be a necessary constraint. However, the constraint
a — d would be redundant, because the ordering a — d it is
implied by the constraint b — c¢. Removing redundant constraints
can decrease the log size.

A logging system for a shared memory system must generate a
set of constraints that will satisfy the ordering requirement, but is
free to choose any set of constraints that will meet that ordering.

To detect which memory operations need to be ordered, we
implement a concurrent-read, exclusive-write (CREW) protocol
between virtual cpus in a multiprocessor virtual machine. This
technique for detecting constraints was first introduced by [9]. The
CREW protocol stipulates that each shared object may be in one of
the following two states:

e concurrent-read: All cpus have read permission, but none have
write permission.

o exclusive-write: One cpu (called the owner) has both read and
write permission; all virtual cpus have no permission.

Each read or write operation to shared memory is checked for ac-
cess before executing. If a virtual cpu attempts a memory operation
for which it has insufficient access, the CREW system must make
requests to the other processors to decrease their permissions, so
that it may increase its own. We call these increases and decreases
in permissions CREW events.

The CREW protocol has the following property: if two mem-
ory instructions on different processors access the same page, and
one of them is a write, there will be a CREW event between the
instructions on each processor. This corresponds precisely with the
ordering requirement. We can take advantage of this property to de-
tect potential races and generate constraints sufficient to replay the
order of accesses for a given execution.

In order to check for access of shared memory reads and writes,
we use hardware page protections, available on all modern desktop
processors. Hardware page protections are enforced by the memory
management unit(MMU), which will check each read and write as
the instruction executes, and cause a fault to the hypervisor on any
violation. Because the checks are done in hardware, the common
case is very fast. It also allows us to interpose on reads and writes
without modifying the software running on the guest.

Generating constraints from CREW events is straightforward.
Each CREW fault will cause two CREW events: a privilege in-
crease on one processor, and a privilege decrease on another pro-
cessor. If a is the point of privilege decrease, and b is the point of
privilege increase, then the constraint a — b will be sufficient to
order any reads and writes associated with this CREW event.

To see why this is so, consider a particular interaction between
two processors, P; and P. Suppose that instruction b at P, writes
to a page which is in concurrent-read mode. This instruction will
cause a fault into the CREW subsystem. The CREW system will
then reduce the privileges of P;, and increase the privileges of Ps.
Let us call the instruction this privilege-decrease happens instruc-
tion a. Processor P, has had read permission from the time it re-
ceived permission through point a. Any instruction during that time
may have read the page that b is about to write. We cannot tell when
the last access was using page protections, but we know that it will
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be before a by program order, so constraining a — b will give us
the ordering we need.

Constraining on privilege-reduction events rather than on the
last read does mean that our replay will be over-constrained. This
is because we do not have access to when the last read or write
to the page actually occurred; any instruction executed before the
privilege-reduction event could have accessed the page.

2.2 Direct Memory Access

Modern hardware systems allow physical devices to write directly
to main memory, without involving the processor. This is called
direct memory access (DMA). DMA eliminates the overhead of
the processor copying data from the device to memory.

Replaying DMA presents some difficulties. In DMA, a device
acts as another processor with respect to memory transactions. A
single processor system with DMA-enabled devices is effectively a
multiprocessor system from replay’s perspective. However, unlike
peer processors in an SMP system, the devices do not have an
MMU that we can use to interpose on accesses’. How are we to
involve devices in the CREW protocol?

The key observation is that DMA devices are not generally
self-motivated peers. They only write to memory in response to a
request from a cpu. Requests typically follow a transaction model,
where a cpu will specify an operation and an area of memory. The
device will access the memory during the operation, and inform
the cpu when the operation is completed. After the transaction is
finished, the device will not access to the memory again. While this
transaction is taking place, it is generally not correct for the cpu to
access the memory assigned to the device to do DMA.

If the device follows this type of transaction model, where
the device will only access memory between certain well-defined
boundaries, and the cpu does not need to access memory to the
device until a transaction is completed, and if the hypervisor can
interpose and understand the commands from the guest to the
device and the device’s responses, we can model the device as a
non-preemptible actor in the CREW protocol. A non-preemptible
actor does explicit acquire and release of pages before and after a
transaction, rather than acquiring them on demand and having them
preempted, as preemptible actors such as virtual cpus do. When a
cpu issues a DMA command to the device, the hypervisor informs
the CREW protocol, which acquires the appropriate privileges on
behalf of the device (either concurrent-read or exclusive-write,
depending on the transaction). When the device informs the cpu
that the transaction is done, the hypervisor informs the CREW
protocol, which will release access on behalf of the device.

If any virtual cpu tries to access a page in a way that is incom-
patible with the CREW privileges of some device on a system, the
CREW system must block its execution until the device has fin-
ished the transaction associated with that page. In this way, we do
not need to rely on the correctness of kernels or device drivers in-
side the virtual machine; only on the correctness of the hardware.

During replay, the constraint replay system must ensure that
the DMA is replayed at the proper time with respect to the other
processors. If we do not use the device during replay, we must log
the data from the DMA during logging in order to replay it from the
log during replay; otherwise, we must ensure that the device does
the DMA properly.

3 Some new systems include an IO-MMU, for controlling DMA access to
memory. However, these systems are designed to prevent buggy drivers and
devices from corrupting system state, and do not necessarily provide ways
to continue an interrupted operation after a fault. Re-executing a faulting
operation is fundamental to our technique.

e concurrent-read: All cpus
have read permission, but none
have write permission.

e exclusive-write: One cpu
(called the owner) has both read
and write permission; all virtual
cpus have no permission.

“1f two memory instructions on
different processors access the
same page, and one of them is a
write, there will be a CREW
event between the instructions
on each processor.”
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If b and c are unrelated, we say that the constraints above are
over-constrained, because they cause the replay system to run more
strictly than necessary: either P, must wait until P, reaches b
(although the data was ready at a), or P, stops and waits at ¢
(although it is not necessary to stop and wait until d), or both. Over-
constraining reduces the potential parallelism during a replay run,
but can be taken advantage of to reduce the number of constraints
or simplify logging.

Suppose instead that @ and d are writes to one area of memory,
and b and ¢ were writes to a second area of memory. In this case,
b — ¢ would be a necessary constraint. However, the constraint
a — d would be redundant, because the ordering a — d it is
implied by the constraint b — c¢. Removing redundant constraints
can decrease the log size.

A logging system for a shared memory system must generate a
set of constraints that will satisfy the ordering requirement, but is
free to choose any set of constraints that will meet that ordering.

To detect which memory operations need to be ordered, we
implement a concurrent-read, exclusive-write (CREW) protocol
between virtual cpus in a multiprocessor virtual machine. This
technique for detecting constraints was first introduced by [9]. The
CREW protocol stipulates that each shared object may be in one of
the following two states:

® concurrent-read: All cpus have read permission, but none have
write permission.

® exclusive-write: One cpu (called the owner) has both read and
write permission; all virtual cpus have no permission.

Each read or write operation to shared memory is checked for ac-
cess before executing. If a virtual cpu attempts a memory operation
for which it has insufficient access, the CREW system must make
requests to the other processors to decrease their permissions, so
that it may increase its own. We call these increases and decreases
in permissions CREW events.

The CREW protocol has the following property: if two mem-
ory instructions on different processors access the same page, and
one of them is a write, there will be a CREW event between the
instructions on each processor. This corresponds precisely with the
ordering requirement. We can take advantage of this property to de-
tect potential races and generate constraints sufficient to replay the
order of accesses for a given execution.

In order to check for access of shared memory reads and writes,
we use hardware page protections, available on all modern desktop
processors. Hardware page protections are enforced by the memory
management unit(MMU), which will check each read and write as
the instruction executes, and cause a fault to the hypervisor on any
violation. Because the checks are done in hardware, the common
case is very fast. It also allows us to interpose on reads and writes
without modifying the software running on the guest.

Generating constraints from CREW events is straightforward.
Each CREW fault will cause two CREW events: a privilege in-
crease on one processor, and a privilege decrease on another pro-
cessor. If a is the point of privilege decrease, and b is the point of
privilege increase, then the constraint a — b will be sufficient to
order any reads and writes associated with this CREW event.

To see why this is so, consider a particular interaction between
two processors, P; and P. Suppose that instruction b at P, writes
to a page which is in concurrent-read mode. This instruction will
cause a fault into the CREW subsystem. The CREW system will
then reduce the privileges of P;, and increase the privileges of Ps.
Let us call the instruction this privilege-decrease happens instruc-
tion a. Processor P, has had read permission from the time it re-
ceived permission through point a. Any instruction during that time
may have read the page that b is about to write. We cannot tell when
the last access was using page protections, but we know that it will
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be before a by program order, so constraining a — b will give us
the ordering we need.

Constraining on privilege-reduction events rather than on the
last read does mean that our replay will be over-constrained. This
is because we do not have access to when the last read or write
to the page actually occurred; any instruction executed before the
privilege-reduction event could have accessed the page.

2.2 Direct Memory Access

Modern hardware systems allow physical devices to write directly
to main memory, without involving the processor. This is called
direct memory access (DMA). DMA eliminates the overhead of
the processor copying data from the device to memory.

Replaying DMA presents some difficulties. In DMA, a device
acts as another processor with respect to memory transactions. A
single processor system with DMA-enabled devices is effectively a
multiprocessor system from replay’s perspective. However, unlike
peer processors in an SMP system, the devices do not have an
MMU that we can use to interpose on accesses’. How are we to
involve devices in the CREW protocol?

The key observation is that DMA devices are not generally
self-motivated peers. They only write to memory in response to a
request from a cpu. Requests typically follow a transaction model,
where a cpu will specify an operation and an area of memory. The
device will access the memory during the operation, and inform
the cpu when the operation is completed. After the transaction is
finished, the device will not access to the memory again. While this
transaction is taking place, it is generally not correct for the cpu to
access the memory assigned to the device to do DMA.

If the device follows this type of transaction model, where
the device will only access memory between certain well-defined
boundaries, and the cpu does not need to access memory to the
device until a transaction is completed, and if the hypervisor can
interpose and understand the commands from the guest to the
device and the device’s responses, we can model the device as a
non-preemptible actor in the CREW protocol. A non-preemptible
actor does explicit acquire and release of pages before and after a
transaction, rather than acquiring them on demand and having them
preempted, as preemptible actors such as virtual cpus do. When a
cpu issues a DMA command to the device, the hypervisor informs
the CREW protocol, which acquires the appropriate privileges on
behalf of the device (either concurrent-read or exclusive-write,
depending on the transaction). When the device informs the cpu
that the transaction is done, the hypervisor informs the CREW
protocol, which will release access on behalf of the device.

If any virtual cpu tries to access a page in a way that is incom-
patible with the CREW privileges of some device on a system, the
CREW system must block its execution until the device has fin-
ished the transaction associated with that page. In this way, we do
not need to rely on the correctness of kernels or device drivers in-
side the virtual machine; only on the correctness of the hardware.

During replay, the constraint replay system must ensure that
the DMA is replayed at the proper time with respect to the other
processors. If we do not use the device during replay, we must log
the data from the DMA during logging in order to replay it from the
log during replay; otherwise, we must ensure that the device does
the DMA properly.

3 Some new systems include an IO-MMU, for controlling DMA access to
memory. However, these systems are designed to prevent buggy drivers and
devices from corrupting system state, and do not necessarily provide ways
to continue an interrupted operation after a fault. Re-executing a faulting
operation is fundamental to our technique.

“we use hardware page
protections, enforced
by the memory
management unit
(MMU), which will
check each read and
write as the instruction
executes, and cause a
fault to the hypervisor
on any violation.”
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If b and c are unrelated, we say that the constraints above are
over-constrained, because they cause the replay system to run more
strictly than necessary: either P, must wait until P, reaches b
(although the data was ready at a), or P, stops and waits at ¢
(although it is not necessary to stop and wait until d), or both. Over-
constraining reduces the potential parallelism during a replay run,
but can be taken advantage of to reduce the number of constraints
or simplify logging.

Suppose instead that @ and d are writes to one area of memory,
and b and ¢ were writes to a second area of memory. In this case,
b — ¢ would be a necessary constraint. However, the constraint
a — d would be redundant, because the ordering a — d it is
implied by the constraint b — c¢. Removing redundant constraints
can decrease the log size.

A logging system for a shared memory system must generate a
set of constraints that will satisfy the ordering requirement, but is
free to choose any set of constraints that will meet that ordering.

To detect which memory operations need to be ordered, we
implement a concurrent-read, exclusive-write (CREW) protocol
between virtual cpus in a multiprocessor virtual machine. This
technique for detecting constraints was first introduced by [9]. The
CREW protocol stipulates that each shared object may be in one of
the following two states:

e concurrent-read: All cpus have read permission, but none have
write permission.

o exclusive-write: One cpu (called the owner) has both read and
write permission; all virtual cpus have no permission.

Each read or write operation to shared memory is checked for ac-
cess before executing. If a virtual cpu attempts a memory operation
for which it has insufficient access, the CREW system must make
requests to the other processors to decrease their permissions, so
that it may increase its own. We call these increases and decreases
in permissions CREW events.

The CREW protocol has the following property: if two mem-
ory instructions on different processors access the same page, and
one of them is a write, there will be a CREW event between the
instructions on each processor. This corresponds precisely with the
ordering requirement. We can take advantage of this property to de-
tect potential races and generate constraints sufficient to replay the
order of accesses for a given execution.

In order to check for access of shared memory reads and writes,
we use hardware page protections, available on all modern desktop
processors. Hardware page protections are enforced by the memory
management unit(MMU), which will check each read and write as
the instruction executes, and cause a fault to the hypervisor on any
violation. Because the checks are done in hardware, the common
case is very fast. It also allows us to interpose on reads and writes
without modifying the software running on the guest.

Generating constraints from CREW events is straightforward.
Each CREW fault will cause two CREW events: a privilege in-
crease on one processor, and a privilege decrease on another pro-
cessor. If a is the point of privilege decrease, and b is the point of
privilege increase, then the constraint a — b will be sufficient to
order any reads and writes associated with this CREW event.

To see why this is so, consider a particular interaction between
two processors, P; and P. Suppose that instruction b at P, writes
to a page which is in concurrent-read mode. This instruction will
cause a fault into the CREW subsystem. The CREW system will
then reduce the privileges of P;, and increase the privileges of Ps.
Let us call the instruction this privilege-decrease happens instruc-
tion a. Processor P, has had read permission from the time it re-
ceived permission through point a. Any instruction during that time
may have read the page that b is about to write. We cannot tell when
the last access was using page protections, but we know that it will
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be before a by program order, so constraining a — b will give us
the ordering we need.

Constraining on privilege-reduction events rather than on the
last read does mean that our replay will be over-constrained. This
is because we do not have access to when the last read or write
to the page actually occurred; any instruction executed before the
privilege-reduction event could have accessed the page.

2.2 Direct Memory Access

Modern hardware systems allow physical devices to write directly
to main memory, without involving the processor. This is called
direct memory access (DMA). DMA eliminates the overhead of
the processor copying data from the device to memory.

Replaying DMA presents some difficulties. In DMA, a device
acts as another processor with respect to memory transactions. A
single processor system with DMA-enabled devices is effectively a
multiprocessor system from replay’s perspective. However, unlike
peer processors in an SMP system, the devices do not have an
MMU that we can use to interpose on accesses’. How are we to
involve devices in the CREW protocol?

The key observation is that DMA devices are not generally
self-motivated peers. They only write to memory in response to a
request from a cpu. Requests typically follow a transaction model,
where a cpu will specify an operation and an area of memory. The
device will access the memory during the operation, and inform
the cpu when the operation is completed. After the transaction is
finished, the device will not access to the memory again. While this
transaction is taking place, it is generally not correct for the cpu to
access the memory assigned to the device to do DMA.

If the device follows this type of transaction model, where
the device will only access memory between certain well-defined
boundaries, and the cpu does not need to access memory to the
device until a transaction is completed, and if the hypervisor can
interpose and understand the commands from the guest to the
device and the device’s responses, we can model the device as a
non-preemptible actor in the CREW protocol. A non-preemptible
actor does explicit acquire and release of pages before and after a
transaction, rather than acquiring them on demand and having them
preempted, as preemptible actors such as virtual cpus do. When a
cpu issues a DMA command to the device, the hypervisor informs
the CREW protocol, which acquires the appropriate privileges on
behalf of the device (either concurrent-read or exclusive-write,
depending on the transaction). When the device informs the cpu
that the transaction is done, the hypervisor informs the CREW
protocol, which will release access on behalf of the device.

If any virtual cpu tries to access a page in a way that is incom-
patible with the CREW privileges of some device on a system, the
CREW system must block its execution until the device has fin-
ished the transaction associated with that page. In this way, we do
not need to rely on the correctness of kernels or device drivers in-
side the virtual machine; only on the correctness of the hardware.

During replay, the constraint replay system must ensure that
the DMA is replayed at the proper time with respect to the other
processors. If we do not use the device during replay, we must log
the data from the DMA during logging in order to replay it from the
log during replay; otherwise, we must ensure that the device does
the DMA properly.

3 Some new systems include an IO-MMU, for controlling DMA access to
memory. However, these systems are designed to prevent buggy drivers and
devices from corrupting system state, and do not necessarily provide ways
to continue an interrupted operation after a fault. Re-executing a faulting
operation is fundamental to our technique.

e concurrent-read: All cpus
have read permission, but none
have write permission.

e exclusive-write: One cpu
(called the owner) has both read
and write permission; all virtual
cpus have no permission.

“1f two memory instructions on
different processors access the
same page, and one of them is a
write, there will be a CREW
event between the instructions
on each processor.”
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Normalized runtime

Baseline, 4 cpus
.0QgQging, 4 cpus

. 0gging, 2 cpus*
.0gging, 1 cpu

I

water-spatia

Workload

Logging rate, compressed

Fills 300GB disk in

FMM

83.6 GB/day

3.6 days

LU

11.7 GB/day

25.7 days

occCan

28.1 GB/day

10.7 days

radix

88.7 GB/day

3.4 days

water-spatial

58.5 GB/day

5.1 days

kernel-build

90.0 GB/day

3.3 days

Table 3. Space overhead of logging a four processor guest.
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1nt var;

void Threadl() { // Runs in one thread.
var++;

}

void Thread2() { // Runs in another thread.
var++;

}

examples from https://github.com/google/sanitizers/wiki/ThreadSanitizerPopularDataRaces


https://github.com/google/sanitizers/wiki/ThreadSanitizerPopularDataRaces

// Ref() and Unref() may be called from several threads.
// Last Unref() destroys the object.
class RefCountedObject {

public:

void Ref() {

ref_++; // Bug!
}

void Unref() {
if (--ref_ == 0) // Bug! Need to use atomic decrement!
delete this;

}

private:
int ref ;

}s

examples from https://github.com/google/sanitizers/wiki/ThreadSanitizerPopularDataRaces


https://github.com/google/sanitizers/wiki/ThreadSanitizerPopularDataRaces

bool done = false;

void Threadl() {
while (!done) {
do something useful in a loop 1();

}
do threadl cleanup();

}

void Thread2() {
do something useful 2();
done = true;
do thread2 cleanup();

}

examples from https://github.com/google/sanitizers/wiki/ThreadSanitizerPopularDataRaces
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bool done = false;

void Threadl() {
while (!done) {
do something useful in a loop 1();

}
do threadl cleanup();

}

void Thread2() {
do something useful 2();
done = true;
do thread2 cleanup();

}

examples from https://github.com/google/sanitizers/wiki/ThreadSanitizerPopularDataRaces


https://github.com/google/sanitizers/wiki/ThreadSanitizerPopularDataRaces

bool done = false;

void Threadl() {
while (!done) {
do something useful in a loop 1();

}
do threadl cleanup();

}

void Thread2() {
done = true;
do something useful 2();
do thread2 cleanup();

}

examples from https://github.com/google/sanitizers/wiki/ThreadSanitizerPopularDataRaces
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order in which they occurred. Between threads, events are ordered accord-
ing to the properties of the synchronization objects they access. If one
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it “Eraser instruments
each call to acquire
. OT T€lease a lock™

For each v, 1 : :
On each read of v by thread ¢,
set C(v) := C(v) N locks held(t);
if C(v) := { }, then issue a warning.
On each write of v by thread ¢,
set C(v) := C(v) N write_locks_held(t);
if C(v) = { }, then issue a warning.

tual machines, this includes logging virtual interrupts, input from
virtual devices such as the virtual keyboard, network, or real-time
clock, and the results of non-deterministic instructions such as
those that read the processor’s time-stamp counter (TSC).

There are two aspects of an event which may be non-deterministic:
data, and timing. We call an event which is non-deterministic in
data an input event. An instruction which reads a processor’s TSC
is an example of an input event. The result of the read is non-
deterministic; but the timing of it is synchronous — that is, it always
happens at the same point in the instruction stream. To replay these
events, the replay system needs to log and replay the data changed
by the event.

An event which is non-deterministic in timing is called an
asynchronous event. A virtual interrupt is an example of an asyn-
chronous event. The state change caused by an interrupt is deter-
ministic (writing certain values on the processor’s stack and chang-
ing certain registers), but the point in the instruction stream where
the interrupt is delivered is non-deterministic.

To replay asynchronous events, an execution replay system
needs to be able to identify the exact point in the instruction stream
where the event occurred, and replay the event at the same point in
the instruction stream during replay. In order to do this, we utilize
the hardware branch counter available on several architectures, in
conjunction with the instruction address. The observation is that if

Eraser: A

We continue
variable enters
ent:
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That is, locks held purely in read mode are removed from the candidate
set when a write occurs, as such locks held by a writer do not protect
against a data race between the writer and some other reader thread.

3. IMPLEMENTING ERASER

Eraser is implemented for the Digital Unix operating system on the Alpha
processor, using the ATOM [Srivastava and Eustace 1994] binary modifica-
tion system. Eraser takes an unmodified program binary as input and adds
instrumentation to produce a new binary that is functionally identical, but
includes calls to the Eraser runtime to implement the Lockset algorithm.

To maintain C(v), Eraser instruments each load and store in the pro-
gram. To maintain lock_held(t) for each thread ¢, Eraser instruments each
call to acquire or release a lock, as well as the stubs that manage thread
initialization and finalization. To initialize C(v) for dynamically allocated
data, Eraser instruments each call to the storage allocator.

Eraser treats each 32-bit word in the heap or global data as a possible
shared variable, since on our platform a 32-bit word is the smallest
memory-coherent unit. Eraser does not instrument loads and stores whose
address mode is indirect off the stack pointer, since these are assumed to be
stack references, and shared variables are assumed to be in global locations
or in the heap. Eraser will maintain candidate sets for stack locations that
are accessed via registers other than the stack pointer, but this is an
artifact of the implementation rather than a deliberate plan to support
programs that share stack locations between threads.

When a race is reported, Eraser indicates the file and line number at
which it was discovered and a backtrace listing of all active stack frames.

Mhea warnardt aleoa 3 nalindas $ha theanad T mwmarmarsy addracss Hxraa AF v ars Aaseer reaueste to the other nrocescore to decreace their nermiscions <O

“In order to reconstruct the
state of shared memory,
each processor must view
writes to shared memory
by other processors as
asynchronous events. We
therefore need to preserve
the order of execution
between the processors.”

2.1 Replaying shared-memory systems

When replaying shared-memory systems, reads from memory by
one processor are affected by writes of another processor. Since
these reads and writes may happen in any arbitrary interleaving, this
introduces fine-grained non-determinism into any shared memory
operation.

In order to reconstruct the state of shared memory, each proces-
sor must view writes to shared memory by other processors as asyn-
chronous events'. We therefore need to preserve the order of exe-
cution between the processors. We do not need a strict instruction-
by-instruction ordering, however. Only reads and writes to shared
memory need to be ordered with respect to each other. More specif-
ically, two instructions need to be ordered only if both of the fol-
lowing are true:

e They both access the same memory.

e At least one of them is a write.

This is the ordering requirement. Any interleaving of instructions

during replay that satisfies the ordering requirement will result in
the same execution®.

We indicate that instruction a is ordered before instruction b by

a — b. This is read, “a happens-before b”. In order to enforce an

order between two processors, we introduce constraints between

: m

of

the device will only access memory between certain well-de ned
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Thread 1 Thread 2

lock(mu);

'

v 1= v+l;

}

unlock(mu) ;

T~

lock(mu);

/

v := v+l1l;

{

unlock(mu) ;

Fig. 1. Lamport’s happens-before orders events in the same thread in temporal order, and
orders events in different threads if the threads are synchronized with one another between
the events.

which these two interactions are exchanged in time. For example, Figure 1
shows one possible ordering of two threads executing the same code
segment. The three program statements executed by Thread 1 are ordered
by happens-before because they are executed sequentially in the same
thread. The lock of mu by Thread 2 is ordered by happens-before with the
unlock of mu by Thread 1 because a lock cannot be acquired before its
previous owner has released it. Finally, the three statements executed by
Thread 2 are ordered by happens-before because they are executed sequen-
tially within that thread.

If two threads both access a shared variable, and the accesses are not
ordered by the happens-before relation, then in another execution of the
program in which the slower thread ran faster and/or the faster thread ran
slower, the two accesses could have happened simultaneously; that is, a
data race could have occurred, whether or not it actually did occur. All
previous dynamic race detection tools that we know of are based on this
observation. These race detectors monitor every data reference and syn-
chronization operation and check for conflicting accesses to shared vari-
ables that are unrelated bv the hapnens-before relation for the pnarticular
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2. THE LOCKSET ALGORITHM

In this section we describe how the Lockset algorithm detects races. The
discussion is at a fairly high level; the techniques used to implement the
algorithm efficiently will be described in the following section.

The first and simplest version of the Lockset algorithm enforces the
simple locking discipline that every shared variable is protected by some
lock, in the sense that the lock is held by any thread whenever it accesses
the variable. Eraser checks whether the program respects this discipline by
monitoring all reads and writes as the program executes. Since Eraser has
no way of knowing which locks are intended to protect which variables, it
must infer the protection relation from the execution history.

For each shared variable v, Eraser maintains the set C(v) of candidate
locks for v. This set contains those locks that have protected v for the
computation so far. That is, a lock / is in C(v) if, in the computation up to
that point, every thread that has accessed v was holding / at the moment of
the access. When a new variable v is initialized, its candidate set C(v) is
considered to hold all possible locks. When the variable is accessed, Eraser
updates C(v) with the intersection of C(v) and the set of locks held by the
current thread. This process, called lockset refinement, ensures that any
lock that consistently protects v is contained in C(v). If some lock [
consistently protects v, it will remain in C(v) as C(v) is refined. If C(v)
becomes empty this indicates that there is no lock that consistently
protects v.

In summary, here is the first version of the Lockset algorithm:

Let locks_held(t) be the set of locks held by thread ¢.
For each v, initialize C(v) to the set of all locks.
On each access to v by thread ¢,

set C(v) := C(v) N locks_held(t);
if C(v) = { }, then issue a warning.

Figure 3 illustrates how a potential data race is discovered through
lockset refinement. The left column contains program statements, executed
in order from top to bottom. The right column reflects the set of candidate
locks, C(v), after each statement is executed. This example has two locks,
so C(v) starts containing both of them. After v is accessed while holding
mul, C(v) is refined to contain that lock. Later, v is accessed again, with
only mu2 held. The intersection of the singleton sets {mul} and {mu2} is
the empty set, correctly indicating that no lock protects v.

2.1 Improving the Locking Discipline

The simble locking discinline we have used so far is too strict. There are
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The concept of one event happening before another
in a distributed system is examined, and is shown to
define a partial ordering of the events. A distributed
algorithm is given for synchronizing a system of logical
clocks which can be used to totally order the events.
The use of the total ordering is illustrated with a
method for solving synchronization problems. The
algorithm is then specialized for synchronizing physical
clocks, and a bound is derived on how far out of
synchrony the clocks can become.
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Introduction

The concept of time is fundamental to our way of
thinking. It is derived from the more basic concept of
the order in which events occur. We say that something
happened at 3:15 if it occurred after our clock read 3:15
and before it read 3:16. The concept of the temporal
ordering of events pervades our thinking about systems.
For example, in an airline reservation system we specify
that a request for a reservation should be granted if it is
made before the flight is filled. However, we will see that
this concept must be carefully reexamined when consid-
ering events in a distributed system.

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM's copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
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A distributed system consists of a collection of distinct
processes which are spatially separated, and which com-
municate with one another by exchanging messages. A
network of interconnected computers, such as the ARPA
net, is a distributed system. A single computer can also
be viewed as a distributed system in which the central
control unit, the memory units, and the input-output
channels are separate processes. A system is distributed
if the message transmission delay is not negligible com-
pared to the time between events in a single process.

We will concern ourselves primarily with systems of
spatially separated computers. However, many of our
remarks will apply more generally. In particular, a mul-
tiprocessing system on a single computer involves prob-
lems similar to those of a distributed system because of
the unpredictable order in which certain events can
occur.

In a distributed system, it is sometimes impossible to
say that one of two events occurred first. The relation
“happened before” is therefore only a partial ordering
of the events in the system. We have found that problems
often arise because people are not fully aware of this fact
and its implications.

In this paper, we discuss the partial ordering defined
by the “happened before” relation, and give a distributed
algorithm for extending it to a consistent total ordering
of all the events. This algorithm can provide a useful
mechanism for implementing a distributed system. We
illustrate its use with a simple method for solving syn-
chronization problems. Unexpected, anomalous behav-
ior can occur if the ordering obtained by this algorithm
differs from that perceived by the user. This can be
avoided by introducing real, physical clocks. We describe
a simple method for synchronizing these clocks, and
derive an upper bound on how far out of synchrony they
can drift.

The Partial Ordering

Most people would probably say that an event a
happened before an event b if a happened at an earlier
time than b. They might justify this definition in terms
of physical theories of time. However, if a system is to
meet a specification correctly, then that specification
must be given in terms of events observable within the
system. If the specification is in terms of physical time,
then the system must contain real clocks. Even if it does
contain real clocks, there is still the problem that such
clocks are not perfectly accurate and do not keep precise
physical time. We will therefore define the “happened

hafore’®” relation withont neino nhvcical oclack c
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Abstract

Execution replay of virtual machines is a technique which has many
important applications, including debugging, fault-tolerance, and
security. Execution replay for single processor virtual machines is
well-understood, and available commercially. With the advance-
ment of multi-core architectures, however, multiprocessor virtual
machines are becoming more important. Our system, SMP-ReVirt,
is the first system to log and replay a multiprocessor virtual ma-
chine on commodity hardware. We use hardware page protection
to detect and accurately replay sharing between virtual cpus of a
multi-cpu virtual machine, allowing us to replay the entire oper-
ating system and all applications. We have tested our system on a
variety of workloads, and find that although sharing under SMP-
ReVirt is expensive, for many workloads and applications, includ-
ing debugging, the overhead is acceptable.

Categories and Subject Descriptors C.4 [Computer Systems Or-
ganization): Performance of Systems — Measurement Techniques;
D.4.1 [Operating Systems): Process Management — multiprocess-
ing

General Terms Design, Measurement, Performance, Reliability,
Security

Keywords ReVirt, execution replay, multithreading, determin-
ism, race recording, multiprocessors, virtual machines, Xen, direct
memory access, SPLASH, page protections

1. Introduction

Execution replay gives the ability to reconstruct the past execution
of a system. In conjunction with a checkpoint of the system state, it
gives the ability to reconstruct the entire state at any point in time
over the replay interval. This ability is useful for several different
applications. For debugging, it allows a programmer to inspect the
execution and state of a particular run of a system, even in the face
of non-determinism[9, 14, S, 8]. For security, it allows a system ad-
ministrator to go back and inspect the entire state of the system be-
fore, during, and after an attack, allowing the system administrator
to determine how the attack took place and observe the attacker’s
activities[6]. For fault tolerance, execution replay allows the state

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
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of a system just before a crash to be recovered without the need
for frequent checkpoints[7, 4, 11]. Recent work has also used exe-
cution replay to efficiently collect and store software architectural
traces[19].

A simple way to apply execution replay to a wide range of
software is to implement execution replay for virtual machines[4].
Running software in a virtual machine capable of being replayed
allows a user to take advantage of execution replay without needing
to modify software running inside the virtual machine. It also has
the advantage of being able to use execution replay on an operating
system kernel.

In order to implement execution replay in a virtual machine,
any non-deterministic event that affects the virtual machine’s state
must be recorded. This state includes all memory allocated to the
virtual machine, the processor registers, and the disk. For a single
processor system, non-deterministic events include any external in-
put (such as keyboard, mouse, or network), as well as the timing
of non-deterministic events like interrupts. The techniques for re-
playing single processor systems are well understood, and are even
available commercially[19].

With the increasing prevalence of multi-core processors, ex-
ecution replay on multiprocessor systems has become more im-
portant. Implementing replay for multiprocessor systems is much
more challenging than single processor systems, however. Because
writes on one processor can affect reads on another processor, the
results of memory races must be recorded and replayed. Existing
solutions require modification to software, or massive modifica-
tions to hardware.

We have built a system, SMP-ReVirt, which is the first system
to log and replay multiprocessor virtual machines on commodity
hardware. In order to detect and replay the results of memory races,
we use hardware page protections, available on all modern desktop
and server processors. This technique allows us to log and replay
unmodified multiprocessor systems, including multiprocessor ker-
nels running inside of a virtual machine.

Logging makes sharing more expensive, but the end-to-end
impact on performance varies widely depending on the workload.
For some applications it is prohibitively expensive, while for others
there is little impact.

This paper explores execution replay for multiprocessor virtual
machines. Section 2 introduces the basic concepts, terms, and re-
quirements of execution replay for single processor virtual ma-
chines. It then discusses the complications that shared-memory sys-
tems introduce, and describes techniques to address them. Section
3 describes the research prototype we built using the Xen hyper-
visor, describing the implementation of the general principles in
more detail, and describing some of the technical issues involved.
In Section 4, we evaluate our research prototype, investigating the
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source of overhead and sharing. Finally, Section 5 discusses related
work.

2. Execution Replay

Logging and replay is widely used for recovering state. The basic
concept is straightforward: start from a checkpoint of a prior state,
then roll forward, replaying events from the log to reach the de-
sired state. The type of system being recovered determines the type
of information that needs to be logged: database logs contain trans-
action records, file system logs contain file system data, and so on.
Replaying a virtual machine requires logging the non-deterministic
events that affect the virtual machine’s computation. These log
records guide the virtual machine as it re-executes (rolls forward)
from a checkpoint. Most events are deterministic (e.g. arithmetic,
memory, branch instructions) and do not need to be logged; the vir-
tual machine will re-execute these events in the same way during
replay as it did during the original execution.

In order to replay an execution, we simply log and replay any
non-deterministic event that affects the state of the system. For vir-
tual machines, this includes logging virtual interrupts, input from
virtual devices such as the virtual keyboard, network, or real-time
clock, and the results of non-deterministic instructions such as
those that read the processor’s time-stamp counter (TSC).

There are two aspects of an event which may be non-deterministic:
data, and timing. We call an event which is non-deterministic in
data an input event. An instruction which reads a processor’s TSC
is an example of an input event. The result of the read is non-
deterministic; but the timing of it is synchronous — that is, it always
happens at the same point in the instruction stream. To replay these
events, the replay system needs to log and replay the data changed
by the event.

An event which is non-deterministic in timing is called an
asynchronous event. A virtual interrupt is an example of an asyn-
chronous event. The state change caused by an interrupt is deter-
ministic (writing certain values on the processor’s stack and chang-
ing certain registers), but the point in the instruction stream where
the interrupt is delivered is non-deterministic.

To replay asynchronous events, an execution replay system
needs to be able to identify the exact point in the instruction stream
where the event occurred, and replay the event at the same point in
the instruction stream during replay. In order to do this, we utilize
the hardware branch counter available on several architectures, in
conjunction with the instruction address. The observation is that if
a given virtual address is executed twice, there must be a branch
between them. Using branch counters allows us to identify a partic-
ular instruction in the instruction stream at which the asynchronous
event occurred, so that we can re-deliver the event at the same point
during replay.

Note that an event may be both asynchronous and an input
event. An example of such an event is DMA from a virtual device,
where both the timing of the DMA, and the data written by the
DMA, must be logged and replayed for the system work correctly.

Input from devices, such as keyboard and network, must be
logged and replayed; however, output, such as writes to a console
or sending network packets, do not affect state and do not need to
be logged or replayed. The data sent will be re-generated by the
replaying system. This data may be discarded without affecting the
reconstruction of the state of the virtual machine. However, it is
frequently useful to involve those devices in replay.

Other devices, such as the disk, allow us a choice. We could
simply log all reads from the disk; but this typically generates
a prohibitive amount of data, even for a moderately short run.
Instead, we can avoid logging input from the disk by including it in
the replaying system. If we checkpoint and restore the disk along
with the rest of the state of the system, writes to the disk will be

If b and c are unrelated, we say that the constraints above are

\ C
d d d d

(2) (b) (c) (d)

Figure 1. Constraints sufficient to guarantee the order a — d

re-generated, which causes reads to return the same data as during
logging. Thus we can make reads from disk deterministic without
logging them.

2.1 Replaying shared-memory systems

When replaying shared-memory systems, reads from memory by
one processor are affected by writes of another processor. Since
these reads and writes may happen in any arbitrary interleaving, this
introduces fine-grained non-determinism into any shared memory
operation.

In order to reconstruct the state of shared memory, each proces-
sor must view writes to shared memory by other processors as asyn-
chronous events'. We therefore need to preserve the order of exe-
cution between the processors. We do not need a strict instruction-
by-instruction ordering, however. Only reads and writes to shared
memory need to be ordered with respect to each other. More specif-
ically, two instructions need to be ordered only if both of the fol-
lowing are true:

¢ They both access the same memory.

e At least one of them is a write.

This is the ordering requirement. Any interleaving of instructions
during replay that satisfies the ordering requirement will result in
the same execution?.

We indicate that instruction a is ordered before instruction b by
a — b. This is read, “a happens-before b”. In order to enforce an
order between two processors, we introduce constraints between
instructions. A constraint @ — b indicates that the replay system
will ensure that b does not execute until a has executed.

Two points on the instruction stream may be ordered even if
there is no direct constraint from one to the other. Within a sin-
gle processor, there is an implicit ordering, based on the order
the instructions were executed. Furthermore, ordering is transitive:
a — band b — cimplies a — c.

Consider Figure 1. Suppose that a and d are writes to the same
memory, but that b and c are unrelated—a — d is the only ordering
necessary. One constraint sufficient to guarantee the ordering is
a — d. But any of the following constraints would imply the order
a — bas well:

® b — d (because a — b by program order)
e a — c (because ¢ — d by program order)

e b — c(because a — b and ¢ — d by program order)

! We can instead view reads from shared memory as synchronous data input
events. This is the method taken by BugNet[12], discussed in Section 5.

2 See [10] for a more complete exploration of the concept of order and state
in a distributed system.

be before a by program order, so constraining a — b will give us

“In order to reconstruct the state
of shared memory, each
processor must view writes to
shared memory by other
processors as asynchronous
events. We therefore need to
preserve the order of execution
between the processors.”

“Only reads and writes to share
memory need to be ordered with
respect to each other”
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Thread 1 Thread 2
Yy := y+1l;

}

lock(mu) ;

unlock(mu) ;

\

lock{(mu);

}

v := v+1l;

{

unlock (mu) ;

{

Yy = y+l;

Fig. 2. The program allows a data race on y, but the error is not detected by happens-before
in this execution interleaving.

Figure 2 shows a simple example where the happens-before approach can
miss a data race. While there is a potential data race on the unprotected
accesses to y, it will not be detected in the execution shown in the figure,
because Thread 1 holds the lock before Thread 2, and so the accesses to y
are ordered in this interleaving by happens-before. A tool based on happens-
before would detect the error only if the scheduler produced an interleaving
in which the fragment of code for Thread 2 occurred before the fragment of
code for Thread 1. Thus, to be effective, a race detector based on happens-
before needs a large number of test cases to test many possible interleav-
ings. In contrast, the programming error in Figure 2 will be detected by
Eraser with any test case that exercises the two code paths, because the
paths violate the locking discipline for y regardless of the interleaving
produced by the scheduler. While Eraser is a testing tool and therefore
cannot guarantee that a program is free from races, it can detect more
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e 7T:asetofthreads. In Java, a thread corresponds to an object
of class Thread.

e G: a set of message IDs. In Java, an example of a mes-
sage is an object that is synchronized on using wait () and
notify().

e A = {READ, WRITE}: the two possible access types for a
Mmemory access.

Program execution generates the following kinds of events:

e Memory access events of the form MEM (m, a, t) where m €
M, a € Aandt € T. These indicate that thread ¢ performed
an access of type a to location m. In Java these correspond
to reading and assigning the values of static and non-static
fields, and reading and assigning array elements.

e Lock acquisition events of the form ACQ(/, t) where l € L
and ¢t € 7. These indicate that thread ¢ acquired lock I. (Java
locks are reentrant; we only generate ACQ when ¢ did not
already hold the lock.) In Java these correspond to entering
a synchronized method or block where ¢ did not already
hold the lock.

e Lock release events of the form REL(/, ¢) where I € £ and
t € T. These indicate that thread ¢ released lock ! and no
longer holds the lock. In Java these correspond to leaving a
synchronized method or block where ¢ usage count on
the lock decreases to zero.

e Thread message send events of the form SND(g,?) where
t € T and g € G. These indicate that thread ¢ is sending a
message g to some receiving thread.

e Thread message receive events of the form RCV(g, ¢) where
t € T and g € G. These indicate that a thread ¢ has re-
ceived a message ¢ from some sending thread and may now
be unblocked if it was blocked before.

Thread message events are only observed by the happens-before
detector, discussed in Section 3.

To simplify the presentation, we assume the abstract machine
is sequential. At each step, it chooses a single thread to run, and
executes that thread for some quantum, possibly generating one
or more events. Thus events are observed by our detector in a se-
quence which depends on the thread schedule. Our implementation
uses locks inside the detector to map Java thread execution into this
sequential abstraction.

2.2 Accumulating Locksets

Before performing lockset-based detection, we must compute
the set of locks held by a thread at any given time.

Given an access sequence (€; ), we compute the locks before step
iby athread ¢, Li(t), as

Li(t) = {l|3Ja.a<iAe.=ACQ(l1¢)
A(Ara<r<iAe.=REL(Lt))}

The “current lockset” for each thread, L;(¢) for each live thread
t, can be efficiently maintained online as acquisition and release
events are received.

2.3 The Lockset Hypothesis

Lockset-based detection relies on the following hypothesis: When-

ever two different threads access a shared memory location, and
one of the accesses is a write, the two accesses are performed hold-
ing some common lock. The postulated lock ensures mutual exclu-
sion for the two accesses to the shared location. A potential race
is deemed to have occurred whenever this hypothesis is violated.
Formally, given an input sequence (e;),

IsPotentialLocksetRace(i, j) =
e; = MEM(mj, a;, ti) A e; = MEM(m;, a;, t;)
Ati #t; AN m; =m; A (a; = WRITEV a; = WRITE)
A Li(t;) N Lj(t;) =0

For example, in Figure 1, the statement “childThread.
interrupt () ” generates a memory access with location main.
childThread, type READ, thread MAIN, and lockset {main}.
The statement “main.childThread” generates a memory ac-
cess onmain.childThread with type WRITE, thread CHILD
and lockset . Therefore IsPotentialLocksetRace will be true for
these two events.

2.4 Lockset-Based Detection

Because the number of races is potentially quadratic in the num-
ber of memory accesses, we cannot report all races, nor would that
be useful in practice. Instead our tool reports one race for each
memory location m on which at least one potential race is detected.
This simplification creates opportunities for many optimizations.

To check IsPotentialLocksetRace for all access to a given mem-
ory location m, it suffices to store a set of (a, £, L) tuples with the
access type, thread, and current lockset for each access to m. Since
we only need to detect one race, multiple accesses with identical
(a,t, L) tuples are redundant and only one tuple need be recorded.
Therefore our basic detection algorithm processes a MEM (m, a, t)
event by first checking to see whether the (a, ¢, L) tuple is already
present for m. If it is already present, the new access is ignored.
Otherwise if (a,t, L) forms a potential race with any prior tuple
(ap,t,, Ly,)according to IsPotentialLocksetRace, a race is reported
and we stop detecting races on m. Otherwise we add (a, ¢, L) to
the tuple set for m.

In practice we perform many optimizations to improve this al-
gorithm. The space requirements of the tuple set, and the cost of
detecting duplicate and racing tuples, can be significantly reduced
by carefully choosing the representation of the tuple set, but for the
sake of brevity this paper does not describe those choices. Other
optimizations are described below.

3. HAPPENS-BEFORE RACE DETECTION

Unfortunately violations of the lockset hypothesis are not always
programming errors. Programmers can and do write safe multi-
threaded code which mutates shared data without specific locks
protecting the data. One common example is programs which use
channels to pass objects between threads in the style of CSP [15].
In such programs thread synchronization and mutual exclusion are
accomplished by explicit signaling between threads.

Figure 2 shows an example of object recycling, a common tech-
nique for reducing object allocation and initialization costs in large
programs. Object recycling often leads false positives in a lockset-
based detector. The problem is that thread A and thread B both
access myBig without holding locks, and thus the accesses are re-
ported as races by the lockset-based detector. However races are
in fact prevented because exclusive ownership of the BigObject is

PPOPP ‘03

“Unfortunately violations of
the lockset hypothesis are not
always programming errors.
One common example is
programs which use

channels to pass objects
between threads in the style o
CSP [15].

In such programs thread
synchronization and mutual
exclusion are accomplished by
explicit signaling between
threads.”



2| ockset - ensure >1 lock always protects shared me
+Doesn’t need to observe a bug happening to find a race
- False positives if different synchronization techniques used

2 Happens-Before - shared accesses must be separated by a sync
+ Causality def'n doesn’t require locks: fewer false positives
- Observing races depends on execution order
- Slower to run in practice than Lockset
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ABSTRACT

Data races are a particularly unpleasant kind of threading
bugs. They are hard to find and reproduce — you may not
observe a bug during the entire testing cycle and will only
see it in production as rare unexplainable failures. This pa-
per presents ThreadSanitizer — a dynamic detector of data
races. We describe the hybrid algorithm (based on happens-
before and locksets) used in the detector. We introduce
what we call dynamic annotations — a sort of race detec-
tion API that allows a user to inform the detector about
any tricky synchronization in the user program. Various
practical aspects of using ThreadSanitizer for testing multi-
threaded C++ code at Google are also discussed.

Categories and Subject Descriptors

D.2.5 [Software Engineering|: Testing and Debugging
Testing tools.

General Terms
Algorithms, Testing, Reliability.

Keywords

Concurrency Bugs, Dynamic Data Race Detection, Valgrind.

1. INTRODUCTION

A data race is a situation when two threads concurrently
access a shared memory location and at least one of the
accesses is a write.

Such bugs are often difficult to find because they happen
only under very specific circumstances which are hard to
reproduce. In other words, a successful pass of all tests
doesn’t guarantee the absence of data races. Since races
can result in data corruption or segmentation fault, it is
important to have tools for finding existing data races and
for catching new ones as soon as they appear in the source
code.
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The problem of precise race detection is known to be NP-
hard (see [20]). However, it is possible to create tools for
finding data races with acceptable precision (such tools will
miss some races and /or report false warnings).

Virtually every C++ application developed at Google is
multithreaded. Most of the code is covered with tests, rang-
ing from tiny unit tests to huge integration and regression
tests. However, our codebase had never been studied using
a data race detector. Our main task was to implement and
deploy a continuous process for finding data races.

2. RELATED WORK

There are a number of approaches to data race detection.
The three basic types of detection techniques are: static, on-
the-fly and postmortem. On-the-fly and postmortem tech-
niques are often referred to as dynamic.

Static data race detectors analyze the source code of a
program (e.g. [11]). It seems unlikely that static detectors
will work effectively in our environment: Google’s code is
large and complex enough that it would be expensive to add
the annotations required by a typical static detector.

Dynamic data race detectors analyze the trace of a par-
ticular program execution. On-the-fly race detectors process
the program’s events in parallel with the execution [14, 22].
The postmortem technique consists in writing such events
into a temporary file and then analyzing this file after the
actual program execution [18].

Most dynamic data race detection tools are based on one
of the following algorithms: happens-before, lockset or both
(the hybrid type). A detailed description of these algorithms
is given in [21]. Each of these algorithms can be used in the
on-the-fly and postmortem analysis.

3. HISTORY OF THE PROJECT

Late in 2007 we tried several publicly available race de-
tectors, but all of them failed to work properly “out of the
box”. The best of these tools was Helgrind 3.3 [8] which had
a hybrid algorithm. But even Helgrind had too many false
positives and missed many real races. Early in 2008 we mod-
ified the Helgrind’s hybrid algorithm and also introduced an
optional pure happens-before mode. The happens-before
mode had fewer false positives but missed even more data
races than the initial hybrid algorithm. Also, we introduced
dynamic annotations (section 5) which helped eliminate false
positive reports even in the hybrid mode.

Still, Helgrind did not work for us as effectively as we
would like it to it was still too slow, missed too many
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a hybrid approach

2Full happens-before tracking for
synchronize operations

2L ockset approach to determine
whether causally-related locksets are
non-empty
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| app | base | ipc | net | unit |
ative [ 85 [ 172M || 77s [ ISLIML | 5s [ 325M | 50s [ B0BM || 435 | O14M |
Memcheck-no-hist 6.7x 2.0x || 1.7x 1.1x 5.2X 1.1x 3.0x 1.6x || 14.8x 1.7x
Memcheck | 10.5x 2.2x 8.2x 20.7x | 1.9x
Helgrind-no-hist 13.9x 2.7x || 1.8x 1.8x 5.4x 1.5x 4.5x 2.2x || 48.7x 3.4x
Helgrind | 1.7x 1.9x 6.7x 62.3x | 3.8x
TS-fast-no-hist 6.2x | 4 2.2x 1.8x 3.9x

2X
7.6x
4.2X
7.4x

3.6x
1.8x
3.6x
1.8x

4.7x
4.7x
0.3x
4.7x

2.4x
2.4x

TS-fast 7.9x%
TS-full-no-hist 8.4x
13.8x

TS-full
TS-phb-no-hist
TS-phb

2.8X
2.8X

2.6x

4.2x
7.4x

8.3x

14.2x 3.6x 0.2x
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7. RACE DETECTION FOR CHROMIUM

One of the applications we test with ThreadSanitizer is
Chromium 1], an open-source browser project.

The code of Chromium browser is covered by a large num-
ber of tests including unit tests, integration tests and inter-

active tests running the real application. All these tests
are continuously run on a large number of test machines
with different operating systems. Some of these machines
run tests under Memcheck (the Valgrind tool which finds
memory-related errors, see 8]) and ThreadSanitizer. When
a new error (either a test failure or a race report from
ThreadSanitizer) is found after a commit to the repository,
the committer of the change is notified. These reports are
available for other developers and maintainers as well.

We have found and fixed a few dozen data races in Chro-
mium itself, and in some third party components used by
this project. You may find all these bugs by searching for
label :ThreadSanitizer at www.crbug.com.
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7.1 Top crasher

One of the first data races we found in Chromium hap-
pened to be the cause of a serious bug, which had been
observed for several months but had not been understood
nor fixed'”. The data race happened on a class called Ref-
Counted. The reference counter was incremented and decre-
mented from multiple threads without synchronization. When

the race actually occurred (which happened very rarely), the
value of the counter became incorrect. This resulted in ei-

ther a memory leak or in two calls of delete on the same
memory. In the latter case, the internals of the memory al-
locator were corrupted and one of the subsequent calls to
malloc failed with a segmentation fault.

The cause of these failures was not understood for a long
time because the failure never happened during debugging,
and the failure stack traces were in a different place. Thread-
Sanitizer found this data race in a single run.

The fix for this data race was simple. Instead of the Ref-
Counted class we needed to use RefCountedThreadSafe, the
class which implements reference counting using atomic in-
structions.

'""See the bug entries http://crbug.com/18488 and

http://erbug.com/15577 describing the race and the
crashes, respectively.



what have we seen

2Time-Traveling Debugging for
reconstructing previous program state

2JIT instrumentation for efficient control
flow modification

2Shadow memory for efficient memory
Introspection



the trace 1s out there

2Novel and experimental hardware

2Query languages and storage for large
trace data

2 Trace visualization techniques
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