
Microservices: State of the Union
Adrian Cockcroft @adrianco

Technology Fellow - Battery Ventures
 June 2016

What does @adrianco do?

@adrianco

Technology Due
Diligence on Deals

Presentations at
Conferences

Presentations at
Companies

Technical
Advice for Portfolio

Companies

Program
Committee for
Conferences

Networking with
Interesting PeopleTinkering with

Technologies

Maintain
Relationship with
Cloud Vendors

Previously: Netflix, eBay, Sun Microsystems, CCL, TCU London BSc Applied Physics

Developer responsibilities:
Faster, cheaper, safer

What Happened?
Rate of change

increased

Cost and size and
risk of change

reduced

Disruptor:
Continuous Delivery with

Containerized Microservices

Microservices

A Microservice Definition

Loosely coupled service oriented
architecture with bounded contexts

A Microservice Definition

Loosely coupled service oriented
architecture with bounded contexts

If every service has to be
updated at the same time
it’s not loosely coupled

A Microservice Definition

Loosely coupled service oriented
architecture with bounded contexts

If every service has to be
updated at the same time
it’s not loosely coupled

If you have to know too much about surrounding
services you don’t have a bounded context. See the
Domain Driven Design book by Eric Evans.

Speeding Up The Platform

Datacenter Snowflakes
• Deploy in months
• Live for years

Speeding Up The Platform

Datacenter Snowflakes
• Deploy in months
• Live for years

Virtualized and Cloud
• Deploy in minutes
• Live for weeks

Speeding Up The Platform

Datacenter Snowflakes
• Deploy in months
• Live for years

Virtualized and Cloud
• Deploy in minutes
• Live for weeks

Container Deployments
• Deploy in seconds
• Live for minutes/hours

Speeding Up The Platform

Datacenter Snowflakes
• Deploy in months
• Live for years

Virtualized and Cloud
• Deploy in minutes
• Live for weeks

Container Deployments
• Deploy in seconds
• Live for minutes/hours

Lambda Deployments
• Deploy in milliseconds
• Live for seconds

Speeding Up The Platform

AWS Lambda is leading exploration of serverless architectures in 2016

Datacenter Snowflakes
• Deploy in months
• Live for years

Virtualized and Cloud
• Deploy in minutes
• Live for weeks

Container Deployments
• Deploy in seconds
• Live for minutes/hours

Lambda Deployments
• Deploy in milliseconds
• Live for seconds

http://www.infoq.com/presentations/Twitter-Timeline-Scalability
http://www.infoq.com/presentations/twitter-soa

http://www.infoq.com/presentations/Zipkin
http://www.infoq.com/presentations/scale-gilt Go-Kit https://www.youtube.com/watch?v=aL6sd4d4hxk

http://www.infoq.com/presentations/circuit-breaking-distributed-systems
https://speakerdeck.com/mattheath/scaling-micro-services-in-go-highload-plus-plus-2014

State of the Art in Web Scale
Microservice Architectures

AWS Re:Invent : Asgard to Zuul https://www.youtube.com/watch?v=p7ysHhs5hl0
Resiliency at Massive Scale https://www.youtube.com/watch?v=ZfYJHtVL1_w

Microservice Architecture https://www.youtube.com/watch?v=CriDUYtfrjs
New projects for 2015 and Docker Packaging https://www.youtube.com/watch?v=hi7BDAtjfKY

Spinnaker deployment pipeline https://www.youtube.com/watch?v=dwdVwE52KkU
http://www.infoq.com/presentations/spring-cloud-2015

http://www.infoq.com/presentations/Twitter-Timeline-Scalability
http://www.infoq.com/presentations/twitter-soa
http://www.infoq.com/presentations/Zipkin
http://www.infoq.com/presentations/scale-gilt
https://www.youtube.com/watch?v=aL6sd4d4hxk
http://www.infoq.com/presentations/circuit-breaking-distributed-systems
https://speakerdeck.com/mattheath/scaling-micro-services-in-go-highload-plus-plus-2014
https://www.youtube.com/watch?v=p7ysHhs5hl0
https://www.youtube.com/watch?v=ZfYJHtVL1_w
https://www.youtube.com/watch?v=CriDUYtfrjs
https://www.youtube.com/watch?v=hi7BDAtjfKY
https://www.youtube.com/watch?v=dwdVwE52KkU
http://www.infoq.com/presentations/spring-cloud-2015

Microservice Architectures

ConfigurationTooling Discovery Routing Observability

Development: Languages and Container

Operational: Orchestration and Deployment Infrastructure

Datastores

Policy: Architectural and Security Compliance

Next Generation Applications
Fill in the gaps, rapidly evolving ecosystem choices

Archaius
LaunchDarkly

Habitat

Configuration

Lambda
Docker

Spinnaker

Tooling

Etcd
Eureka
Consul

Discovery

Compose
Linkerd
Weave

Routing

Zipkin
Prometheus

Hystrix

Observability

Development: components interfaces languages e.g. Docker Hub, Artifactory, Datawire Quark, Go, Rust

Operational: Mesos, Kubernetes, Swarm, Nomad for private clouds. ECS, Mesos, GKS for public

Datastores: Orchestrated, Distributed Ephemeral e.g. Cassandra, or DBaaS e.g. DynamoDB

Policy: Security compliance e.g. Docker Content Trust. Architecture compliance e.g. Cloud Foundry

@adrianco

In Search of Segmentation

Ops

Dev

Datacenters
AD/LDAP Roles
VLAN Networks

Hypervisor
IPtables

Docker Links

AWS Accounts
IAM Roles
VPC
Security Groups
Calico Policy
Docker Net/Weave

@adrianco

Hierarchical Segmentation

B CA B C E FD E F

Homepage Team Security Group Reports Team Security Group
VPC Z - Manage a small number of network spaces

D

An AWS oriented example…

AWS Account - Manage across multiple accounts

containers and links

@adrianco

What’s Often Missing?

Failure injection testing
Versioning, routing

Binary protocols and interfaces
Timeouts and retries

Denormalized data models
Monitoring, tracing

Simplicity through symmetry

@adrianco

Failure Injection Testing
Netflix Chaos Monkey, Simian Army, FIT and Gremlin

http://techblog.netflix.com/2011/07/netflix-simian-army.html
http://techblog.netflix.com/2014/10/fit-failure-injection-testing.html
http://techblog.netflix.com/2016/01/automated-failure-testing.html
https://www.infoq.com/presentations/failure-test-research-netflix

http://techblog.netflix.com/2011/07/netflix-simian-army.html
http://techblog.netflix.com/2014/10/fit-failure-injection-testing.html
http://techblog.netflix.com/2016/01/automated-failure-testing.html
https://www.infoq.com/presentations/failure-test-research-netflix

! Chaos Monkey - enforcing stateless business logic

! Chaos Gorilla - enforcing zone isolation/replication

! Chaos Kong - enforcing region isolation/replication

! Security Monkey - watching for insecure configuration settings

! FIT & Gremlin - inject errors to enforce robust dependencies

! See over 100 NetflixOSS projects at netflix.github.com

! Get “Technical Indigestion” reading techblog.netflix.com

 Trust with Verification

http://netflix.github.com
http://techblog.netflix.com

@adrianco

Benefits of version aware routing

Immediately and safely introduce a new version
Canary test in production

Use DIY feature flags or .

Route clients to a version so they can’t get disrupted
Change client or dependencies but not both at once

Eventually remove old versions
Incremental or infrequent “break the build” garbage collection

@adrianco

Versioning, Routing
Version numbering: Interface.Feature.Bugfix

V1.2.3 to V1.2.4 - Canary test then remove old version

V1.2.x to V1.3.x - Canary test then remove or keep both
Route V1.3.x clients to new version to get new feature

Remove V1.2.x only after V1.3.x is found to work for V1.2.x clients

V1.x.x to V2.x.x - Route clients to specific versions
Remove old server version when all old clients are gone

@adrianco

Protocols

Measure serialization, transmission, deserialization costs

Sending a megabyte of XML between microservices will
make you sad, but not as sad as 10yrs ago with SOAP

Use Thrift, Protobuf/gRPC, Avro, SBE internally
Use JSON for external/public interfaces
https://github.com/real-logic/simple-binary-encoding

https://github.com/real-logic/simple-binary-encoding

@adrianco

Interfaces

When you build a service, build a “driver” client for it
Reference implementation error handling and serialization

Release automation stress test using client
Validate that service interface is usable!

Minimize additional dependencies

Swagger - OpenAPI Specification
Datawire Quark adds behaviors to API spec

@adrianco

Interface Version Pinning

Change one thing at a time!
Pin the version of everything else

Incremental build/test/deploy pipeline

Deploy existing app code with new platform
Deploy existing app code with new dependencies

Deploy new app code with pinned platform/dependencies

@adrianco

 Interfaces between teams

@adrianco

 Interfaces between teams

Client
Code

Minimal
Object Model

@adrianco

 Interfaces between teams

Service
Code

Client
Code

Minimal
Object Model

Full Object
Model

@adrianco

 Interfaces between teams

Service
Code

Client
Code

Minimal
Object Model

Full Object
Model

Cache
Code

Common
Object Model

Decoupled
object

models

@adrianco

 Interfaces between teams

Service
Code

Client
Code

Minimal
Object Model

Service
Driver

Service
Handler

Full Object
Model

Cache
Code

Common
Object Model

Decoupled
object

models

@adrianco

 Interfaces between teams

Service
Code

Client
Code

Minimal
Object Model

Cache
Driver

Service
Driver

Service
Handler

Full Object
Model

Cache
Code

Cache
Handler

Common
Object Model

Decoupled
object

models

@adrianco

 Interfaces between teams

Service
Code

Client
Code

Minimal
Object Model

Cache
Driver

Service
Driver

Platform Platform

Service
Handler

Full Object
Model

Cache
Code

Platform

Cache
Handler

Common
Object Model

Decoupled
object

models

@adrianco

 Interfaces between teams

Service
Code

Client
Code

Minimal
Object Model

Cache
Driver

Service
Driver

Platform Platform

Service
Handler

Full Object
Model

Cache
Code

Platform

Cache
Handler

Common
Object Model

Versioned
dependency
interfacesDecoupled

object
models

@adrianco

 Interfaces between teams

Service
Code

Client
Code

Minimal
Object Model

Cache
Driver

Service
Driver

Platform Platform

Service
Handler

Full Object
Model

Cache
Code

Platform

Cache
Handler

Common
Object Model

Versioned
dependency
interfaces

Versioned
platform
interface

Decoupled
object

models

@adrianco

 Interfaces between teams

Service
Code

Client
Code

Minimal
Object Model

Cache
Driver

Service
Driver

Platform Platform

Service
Handler

Full Object
Model

Cache
Code

Platform

Cache
Handler

Common
Object Model

Versioned
dependency
interfaces

Versioned
platform
interface

Decoupled
object

models

Versioned routing

@adrianco

Timeouts and Retries

Connection timeout vs. request timeout confusion

Usually setup incorrectly, global defaults

Systems collapse with “retry storms”

Timeouts too long, too many retries

Services doing work that can never be used

@adrianco

Connections and Requests
TCP makes a connection, HTTP makes a request

HTTP hopefully reuses connections for several requests

Both have different timeout and retry needs!

TCP timeout is purely a property of one network latency hop
HTTP timeout depends on the service and its dependencies

connection path
request path

@adrianco

Timeouts and Retries

Edge
Service

Good
Service

Good
Service

Bad config: Every service defaults to 2 second timeout, two retries

Edge
Service not
responding

Overloaded
service not
responding

Failed
Service

If anything breaks, everything upstream stops responding

Retries add unproductive work

@adrianco

Timeouts and Retries

Edge
Service

Good
Service

Good
Service

Bad config: Every service defaults to 2 second timeout, two retries

Edge
Service not
responding

Overloaded
service not
responding

Failed
Service

If anything breaks, everything upstream stops responding

Retries add unproductive work

@adrianco

Timeouts and Retries

Edge
Service

Good
Service

Good
Service

Bad config: Every service defaults to 2 second timeout, two retries

Edge
Service not
responding

Overloaded
service not
responding

Failed
Service

If anything breaks, everything upstream stops responding

Retries add unproductive work

@adrianco

Timeouts and Retries
Bad config: Every service defaults to 2 second timeout, two retries

Edge
service

responds
slowly

Overloaded
service

Partially
failed

service

@adrianco

Timeouts and Retries
Bad config: Every service defaults to 2 second timeout, two retries

Edge
service

responds
slowly

Overloaded
service

Partially
failed

service

First request from Edge timed out so it ignores the successful
response and keeps retrying. Middle service load increases as

it’s doing work that isn’t being consumed

@adrianco

Timeouts and Retries
Bad config: Every service defaults to 2 second timeout, two retries

Edge
service

responds
slowly

Overloaded
service

Partially
failed

service

First request from Edge timed out so it ignores the successful
response and keeps retrying. Middle service load increases as

it’s doing work that isn’t being consumed

@adrianco

Timeout and Retry Fixes

Cascading timeout budget
Static settings that decrease from the edge

or dynamic budget passed with request

How often do retries actually succeed?
Don’t ask the same instance the same thing

Only retry on a different connection

@adrianco

Timeouts and Retries

Edge
Service

Good
Service

Budgeted timeout, one retry

Failed
Service

@adrianco

Timeouts and Retries

Edge
Service

Good
Service

Budgeted timeout, one retry

Failed
Service

3s
1s
1s

Fast fail
response
after 2s

Upstream timeout must always be longer than
total downstream timeout * retries delay

No unproductive work while fast failing

@adrianco

Timeouts and Retries

Edge
Service

Good
Service

Budgeted timeout, failover retry

Failed
Service

For replicated services with multiple instances
never retry against a failed instance

No extra retries or unproductive work

Good
Service

@adrianco

Timeouts and Retries

Edge
Service

Good
Service

Budgeted timeout, failover retry

Failed
Service3s 1s

For replicated services with multiple instances
never retry against a failed instance

No extra retries or unproductive work

Good
Service

Successful
response
delayed 1s

@adrianco

Manage Inconsistency

ACM Paper: "The Network is Reliable"
Distributed systems are inconsistent by nature

Clients are inconsistent with servers
Most caches are inconsistent

Versions are inconsistent
Get over it and

Deal with it

See http://queue.acm.org/detail.cfm?id=2655736

http://dl.acm.org/citation.cfm?id=2655736
http://queue.acm.org/detail.cfm?id=2655736

@adrianco

Denormalized Data Models

Any non-trivial organization has many databases
Cross references exist, inconsistencies exist

Microservices work best with individual simple stores
Scale, operate, mutate, fail them independently

NoSQL allows flexible schema/object versions

@adrianco

Denormalized Data Models
Build custom cross-datasource check/repair processes

Ensure all cross references are up to date
Read these Pat Helland papers

Immutability Changes Everything
http://highscalability.com/blog/2015/1/26/paper-immutability-changes-everything-by-pat-helland.html

Memories, Guesses and Apologies
https://blogs.msdn.microsoft.com/pathelland/2007/05/15/memories-guesses-and-apologies/

Standing on the Distributed Shoulders of Giants
http://queue.acm.org/detail.cfm?id=2953944

http://highscalability.com/blog/2015/1/26/paper-immutability-changes-everything-by-pat-helland.html
https://blogs.msdn.microsoft.com/pathelland/2007/05/15/memories-guesses-and-apologies/
http://queue.acm.org/detail.cfm?id=2953944

Cloud Native
Monitoring and
Microservices

Low Latency SaaS Based Monitors

https://www.datadoghq.com/ http://www.instana.com/ www.bigpanda.io www.vividcortex.com signalfx.com wavefront.com sysdig.com
See www.battery.com for a list of portfolio investments

https://www.datadoghq.com/
http://www.instana.com/
http://www.bigpanda.io
http://www.vividcortex.com
http://signalfx.com
http://wavefront.com
http://sysdig.com

A Tragic Quadrant

Ability to scale

Ability to
handle
rapidly
changing
microservices

In-house tools
at web scale
companies

Most current
monitoring & APM

tools

Next generation
APM

Next generation
Monitoring

Datacenter

Cloud

Containers

100s 1,000s 10,000s 100,000s

Lambda

A Tragic Quadrant

Ability to scale

Ability to
handle
rapidly
changing
microservices

In-house tools
at web scale
companies

Most current
monitoring & APM

tools

Next generation
APM

Next generation
Monitoring

Datacenter

Cloud

Containers

100s 1,000s 10,000s 100,000s

Lambda

YMMV: Opinionated approximate positioning only

Interesting
architectures have a
lot of microservices!
Flow visualization is

a big challenge.

See http://www.slideshare.net/LappleApple/gilt-from-monolith-ruby-app-to-micro-service-scala-service-architecture

Simulated Microservices
Model and visualize microservices
Simulate interesting architectures
Generate large scale configurations
Eventually stress test real tools

Code: github.com/adrianco/spigo
Simulate Protocol Interactions in Go
Visualize with D3
See for yourself: http://simianviz.surge.sh
Follow @simianviz for updates

ELB Load Balancer

Zuul
API Proxy

Karyon
Business Logic

Staash
Data Access Layer

Priam
Cassandra Datastore

Three
Availability
Zones

Denominator
DNS Endpoint

http://github.com/adrianco/spigo
http://simianviz.surge.sh

@adrianco

Simplicity through symmetry

Symmetry
Invariants

Stable assertions
No special cases

Single purpose components

Serverless

Serverless Architectures

AWS Lambda getting some early wins

Google Cloud Functions, Azure Functions alpha launched

IBM OpenWhisk - open sourced

Startup activity: iron.io , serverless.com, apex.run toolkit

http://iron.io
http://serverless.com
http://apex.run

@adrianco

Serverless Architecture

API Gateway

Kinesis S3DynamoDB

@adrianco

Serverless Architecture

API Gateway

Kinesis S3DynamoDB

@adrianco

Serverless Architecture

API Gateway

Kinesis S3DynamoDB

AWS Lambda Reference Arch
http://www.allthingsdistributed.com/2016/05/aws-lambda-serverless-reference-architectures.html

http://www.allthingsdistributed.com/2016/05/aws-lambda-serverless-reference-architectures.html

Serverless Programming Model

Event driven functions
Role based permissions

Whitelisted API based security
Good for simple single threaded code

Serverless Cost Efficiencies

100% useful work, no agents, overheads
100% utilization, no charge between requests

No need to size capacity for peak traffic
Anecdotal costs ~1% of conventional system

Ideal for low traffic, Corp IT, spiky workloads

Serverless Work in Progress

Tooling for ease of use
Multi-region HA/DR patterns

Debugging and testing frameworks
Monitoring, end to end tracing

DIY Serverless Operating Challenges

Startup latency
Execution overhead

Charging model
Capacity planning

Learn More…

@adrianco

“We see the world as increasingly more complex and chaotic
because we use inadequate concepts to explain it. When we
understand something, we no longer see it as chaotic or complex.”

Jamshid Gharajedaghi - 2011
Systems Thinking: Managing Chaos and Complexity: A Platform for Designing Business Architecture

Q&A
Adrian Cockcroft @adrianco

http://slideshare.com/adriancockcroft
Technology Fellow - Battery Ventures

See www.battery.com for a list of portfolio investments

http://slideshare.com/adriancockcroft
http://slideshare.com/adriancockcroft
http://slideshare.com/adriancockcroft

Security

Visit http://www.battery.com/our-companies/ for a full list of all portfolio companies in which all Battery Funds have invested.

Palo Alto Networks

Enterprise IT

Operations &
Management

Big DataCompute

Networking

Storage

http://www.battery.com/our-companies/

