Storms in the Cloud

Designing and using a fault injection system

Michalis Zervos N |
@mzervos R

Xbox Live is down due to Microsoft Azure issues| | Salesforce outage continues in
o some parts of the US

Netflix CS

@Netflixhelps

, - - Gmail and Google Drive are down again for some people
We're aware some members are experiencing thenextweb.com » Goodale «

technical difficulties on the web site in all regions. Google appears to be experiencing some issues at the moment as a number of users
We hope to resolve this asap. | are reporting that both Gmail and Google Drive are down.

Mysterious Xbox Live outage leaves some of your games inaccessible
mashable.com/2016/02/22/xbox-live-outage-february-2016/

AWS Sydney outage prompts " Azure cloud suffers multi-region outage
iT News

architecture rethink Azure storage, virtual machines, websites, Active Directory and the .. It confirmed
the outages but did not provide detail on the cause.

Customers consider multi-region
redundancy.

Service Resilience

* Not a solved problem

* Goal is:
* 100% uptime
* No degradation
* Responsive

Traditional testing

* Unit tests
* Functional / Integration
* End to end

Cloud services — Testing challenges

* Continuous evolution

* Multiple dependencies
* Global distribution

* Traffic fluctuation

Cloud services — Fundamentals

* Auto-scaling

* Redundancy

* Monitoring and detection systems

» Auto-mitigation / Failover mechanisms
 Staged deployments

* Data replication

The extra mile

* Embrace failure
* Break the system

* Adjust the engineering process

“Storms in the Cloud

Fault Injection System

Support diverse services

Easy to use

Verify resilience and behavior

Simulate complex failures / real-life incidents

Agenda

Desighing a Fault
Injection System

Usage patterns

Faults

* Resource pressure
* Network

* Processes

* Virtual machine

* Platform

* Application specific
* Hardware

Faults

* Resource pressure
* Network

* Processes

* Virtual machine

* Platform
 Application specific
* Hardware

Resource Pressure Faults

* CPU

* Memory
* Physical
* Virtual

e Hard disk
* Capacity
* Read
* Write

Available tools
e consume.exe (Windows SDK)

e stress (Unix)

* Sysinternals tools

Faults

* Resource pressure
* Network

* Processes

* Virtual machine

* Platform

* Application specific
* Hardware

Network faults

* Layers
* Transport (TCP/UDP)
* Application layer (HTTP)

* Types
* Disconnect
* Latency
 Alter response codes (HTTP)
* Packet reorder / loss (TCP/UDP)

* Filters
* Domain / IP / Subnet
* URL path
* Port / Protocol

Available tools
* Network Emulator Toolkit (NEWT)
e Fiddler core

Faults

* Resource pressure
* Network

* Processes

* Virtual machine

* Platform

* Application specific
* Hardware

Process faults

* Stop / Kill

* Restart

* Stop service
* Start

* Crash

* Hang

Available tools
 OS commands
* Sysinternals tools

Faults

* Resource pressure
* Network

* Processes

* Virtual machine

* Platform
 Application specific
* Hardware

Virtual Machine / OS faults

* Stop Available tools

* Restart * Cloud Management APIs
* BSOD / Kernel panic OS commands

* Change date * Sysinternals tools

* Re-image

Faults

* Resource pressure
* Network

* Processes

* Virtual machine

* Platform

* Application specific
* Hardware

Distributed platform faults

* Quorum loss Available tools — Platform specific
* Data loss * Service Fabric testability APIs

* Move primary node

* Remove replica

Faults

* Resource pressure
* Network

* Processes

* Virtual machine

* Platform
 Application specific
* Hardware

Application specific faults

* Hooks
* |nstrument service code

* Intercept / Re-route calls
 No access to service code

public async Item GetItem{string id)

{

var response = await this.client.GetAsync($"/items/{id}");
if (response.IsSuccessStatusCode)
{

return await resonse.Content.ReadAsAsync<Item>();

}

return null;

Available tools
* MSR Detours

* TestApi — Managed Fault Injection

Application specific faults

* Hooks Available tools
* Instrument service code e MSR Detours

* Intercept / Re-route calls

* TestApi — Managed Fault Injection
* No access to service code

public async Item GetItem{string id)

{
var response < iait thiOclient.GetAsync($"/items/{id}");
if (responsd ae _ade)
{ public void Intercept()
return awa’ “ontent.ReadAsAsync<Item>(); {
}

Thread.Sleep(4888) ;
throw new HttpRequestException(“"Not found™);

return null;

Faults

* Resource pressure
* Network

* Processes

* Virtual machine

* Platform

* Application specific
* Hardware

Hardware faults

* Machine

* Network devices
* Rack

e UPS

* Datacenter

Faults

* Resource pressure
* Network

* Processes

* Virtual machine

* Platform

* Application specific
* Hardware

Injection mechanism

* VM External
* VM Internal — Service code external =2 Agent

* VM Internal — Service code internal 2 Hooks

Injection mechanism

* VM External
* VM Internal — Service code external =2 Agent

* VM Internal — Service code internal 2 Hooks

External injection

* VM / Region Stop
* VM / Region Restart
* Re-image

Management Service

Target VM

Injection mechanism

* VM External
* VM Internal — Service code external = Agent

* VM Internal — Service code internal 2 Hooks

VM internal injection - Agent

Virtual Machine * Resource pressure
? \ * Network

» ! * Processes
Fault Agent

e OS
l \ * Detours

Target Service VM

Target Application

Injection mechanism

* VM External
* VM Internal — Service code external =2 Agent

* VM Internal — Service code internal 2 Hooks

VM internal injection - Hooks

public async Item GetItem(string id) * Application bEhaVior
{

var response = await this.client.GetAsync($"/items/{id}"); ° Flex|b|||ty
if (response.IsSuccessStatusCode)

| { | * Service specific
return await resonse.Content.ReadAsAsync<Item>();
Target Application }

return null;

VM internal injection - Hooks

'r:[:uhlic async Item GetItem(string id) . Appllcatlon bEhaV|Or
/if (this.ShouldInject())) ° F|exibi|ity
Thread.Sleep(4888); : Fi
throw new HttpRequestException{“Not found"); * SerV|Ce SpeCIfIC
Target Application K} /

var response = await this.client.GetAsync($"/items/{id}");
if (response.IsSuccessStatusCode)
{

return await resonse.Content.ReadAsAsync<Item>();

}

return null;

System Architecture

Target Service VMs

Fault
Management
Service

X Fault Agent
Management Service

Fault Agent

System components

System components

4 I

Auditing Automation

Verification Reporting
- /

Security and Safety

e AuthN / AuthZ
* Fault agents

* Kill switch
 Safety nets

Security and Safety

e AuthN / AuthZ * Integrate with Identity Provider
Azure Active Directory

e Multi-Factor Authentication
* Least-privilege principle
 Granular access levels

Security and Safety

 AuthN / AuthZ
* Fault agents

* Kill switch
 Safety nets

* Secure communication — TLS/SSL
* Code signing
* Execution permissions

Security and Safety

o AuthN / AuthZ
* Fault agents
* Kill switch

 Safety nets

Security and Safety

 Safety nets

Auto fault removal

* Agents — Service connectivity loss
Agent-side detection

* Service malfunctioning
Auto-monitoring module

* Unusual behavior
Anomaly detection

System components

System components

_

Automation

Security J

Verification

Reporting

Auditing

* Faults

* Fault agents

* Management service
* Clients

System components

System components

/

Auditing

_

Securit
L Y

Verification

Reporting

i

Automation

* Scheduling
e Zero - configuration

* Dependencies auto-discovery

System components

System components

/

Auditing

Automation

|

Security

Reporting

System components

4 A

Auditing Automation

[

Security

Verification

_

Your PC ran into a problem and needs to restart. We're just
collecting some error info, and then we'll restart for you. (0%
complete)

If youd like to know more, you can search online later for this error: HAL_INITIALIZATION_FAILED

Usage scenarios

* Resilience verification

* Test new features

* Training

* Verify staged deployments

 Test detection, alerting, mitigation systems

* Repro incidents

Injection environment

Recovery Games

Recovery Games

Attacker Defender
* Inject faults * Assess
* Provide hints * Analyze

* Mitigate

Recovery Games - Goals

* Familiarize with monitoring tools
* Recognize outage patterns

* Train on assessing the impact

* Root-cause / mitigation mindset

* Practice log analysis

Invest in Fault Injection Testing

Engineering process & culture

Michalis Zervos
@mzervos

B Microsoft

