
INFRASTRUCTURE 
AS CODE



kief@thoughtworks.com
Cloud Practice Lead (UK)

DevOps, Continuous Delivery, Agile Ops

Twitter: @kief
Book: http://oreil.ly/1JKIBVe
Site: http://infrastructure-as-code.com

June 2016

http://oreil.ly/1JKIBVe
http://infrastructure-as-code.com


AGENDA CONTEXT
● Motivations
● Challenges

INFRASTRUCTURE AS CODE
● Key Practices
● Simple Pipeline
● Scaling Pipelines



SPEED
Get something to 
market quickly

Iterate it

Continuously 
improve it



TECHNOLOGY
Cloud, 
automation, etc. 
lowers barriers 
for making 
changes



DANGER
Security

Performance

Stability

Compliance

Maintainability



SECRET
High quality 
services rely on 
the ability to 
make changes 
quickly



GOAL
Be able to make 
changes

Rapidly,

Frequently,

and Responsibly



CHALLENGES



SERVER SPRAWL
Creating new servers is the easy part



CONFIGURATION DRIFT

Servers start 
out identical

But changes 
accumulate 
over time



AUTOMATION FEAR CYCLE



INFRASTRUCTURE 
AS CODE
“Applying software engineering tools and practices to 
infrastructure”



UNATTENDED AUTOMATION

Tools run on a 
schedule to apply, 
re-apply, and update 
configuration

BENEFITS OF UNATTENDED:
● Discover problems quickly
● Force yourself to fix those 

problems
● Force yourself to improve 

your tools and processes
● Discourages “out of band” 

changes



AUTOMATE SERVER UPDATES

Automation isn’t just for new servers!

Configuration 
synchronization

Run Chef, Puppet, Ansible, etc. on a 
schedule

Immutable servers Apply changes by rebuilding 
servers

Containerized 
servers

Apply changes by deploying new 
container instances



RE-USE & PROMOTE DEFINITIONS

Re-use the same definition files across environments for 
a given application or service

DEV STAGE PRODPlaybooks, 
Cookbooks, 
Manifests, 

templates, etc.



TEST INFRASTRUCTURE CHANGES

Preventing DevOops

INFRA
TEST

DEV 
TEST

PROD



PIPELINES
Using Continuous Delivery pipelines to manage 
infrastructure



WHAT?

Terraform, 
Puppet, etc.

Changes are 
made and 
committed to 
VCS

Tools are run on 
agents to apply 
changes to 
environments

Changes are only 
promoted after 
passing tests & 
authorization



WHY?
Validates changes 
to infrastructure 
before applying 
them to production

Confidence for 
frequent, small 
improvements to 
infrastructure

Limit direct 
changes to 
infrastructure



TESTING
Correctness

Security policies

Performance
Stability



GOVERNANCE
The process for applying changes is auditable

Changes can be traced back to commits

Automation ensures processes are followed

Authorization can be required as needed



SIMPLE
An example with a fairly simple 
environment



VPC

Subnet
10.0.0.0/16

Security Group
1.1.1.0/16 -> :443

DEFINING A SIMPLE ENVIRONMENT

ANSIBLE PLAYBOOK
Server configuration

TERRAFORM FILE
Environment structure

APPLICATION SOURCE
Deployable application



SIMPLE PIPELINE DESIGN

BUILD 
STAGE

TEST 
STAGE QA STAGE PROD 

STAGE

Application Ansible Terraform

Deploy application, configuration, and infrastructure



SCALING
Handling more complex infrastructure



ALIGN INFRASTRUCTURE DESIGN TO 
TEAMS

Ensure teams can 
make the changes 
they need easily 
and safely



COMPLEX ENVIRONMENTS
Infrastructure involving multiple teams



FAN-IN PIPELINE
ServiceA

ServiceB

ServiceC

SYSTEM 
TEST QA PROD

BUILD

BUILD

BUILD

SERVICE 
TEST

SERVICE 
TEST

SERVICE 
TEST



DECOUPLED PIPELINES
ServiceA

TESTBUILD

ServiceB

TESTBUILD

ServiceC

TESTBUILD

QA PROD

QA PROD

QA PROD



DEPENDENCIES
ServiceA

TESTBUILD

ServiceB

QA PROD

TESTBUILD QA PROD

Create test 
instance of 

provider

Implement 
Consumer 

Driven Contract 
(CDC) Tests

Use mocks 
and stubs



ISSUE: DUPLICATION
Multiple teams using similar systems, e.g. database clusters



RE-USE BY FORKING DEFINITIONS

Disadvantages:
- Divergence and 

Inconsistency

Advantages:
- Avoid tight coupling
- Handles diverse requirements



RE-USE WITH DEFINITION LIBRARIES

Challenges:

- Avoid tight coupling, so teams 
aren’t blocked when making 
changes

- Ownership of code shared by 
multiple teams

Guidance:

- Use separate pipelines for 
each

- Use CDC & other dependency 
testing strategies



LIBRARY PIPELINE

Server AMI

BUILD

Service

TEST

BUILD TEST

Test shared definitions before pulling them into dependent 
pipelines



ISSUE: SHARED ELEMENTS

LOAD BALANCER

ServiceA
VIP

ServiceB
VIP

Shared 
infrastructure 

definitions

Service-specific 
infrastructure 

definitions



SHARING ELEMENTS
Avoid monoliths - optimize to simplify making changes



OUTCOMES ● Quickly provision and 
evolve infrastructure

● Effortlessly roll out fixes

● Keep systems consistent 
and up to date

● Spend time on high value 
work



Book: http://oreil.ly/1JKIBVe
Site: http://infrastructure-as-code.com
Twitter: @kief

kief@thoughtworks.com
Cloud Practice Lead (UK)

DevOps, Continuous Delivery, Agile Ops

http://oreil.ly/1JKIBVe
http://infrastructure-as-code.com

