
How containers have panned out

Adrian Trenaman, Raconteur & SVP Engineering, Gilt / HBC Digital
Q-Con, New York, June 2016
@gilttech @adrian_trenaman @hbc_tech

“What competitive advantage did
containers give you?”

Gilt: luxury designer brands at discounted prices

we shoot the product in our studios

we receive, store, pick, pack and ship...

we sell every day at noon...

stampede...

this is what the stampede really looks like...

m > n
This is fundamentally a packing problem.

We have n machines, and we have m services to deploy.

1
It’s also an isolation problem

Any given service / team / engineer shouldn’t be able to take out someone else’s
work in production.

It’s also an impedance mismatch problem.

Developers often think of machines as something that’s all theirs, magically
provided by the hardware fairy.

LXC
Leveraging LXC in Tokyo for Gilt Japan

Rack 1

Load Balancer

DB (CLXC)

Email

Email

16xCPU, 128GB RAM,
900GB Disk.

Ubuntu 12.04 (→ 16.04)

~220 CLXC in total.

Rack 1

Load Balancer

20-40 CLXC

20-40 CLXC

20-40 CLXC

20-40 CLXC

20-40 CLXC

20-40 CLXC

DB (CLXC)

Email

Email

✔ Scalable, performant use of machine resources.

✔ Solves the impedance mismatch: developers see ‘a machine’

✔ Limits the damage a single engineer can do.

✔ Infra/Devops engineer embedded into a tightly knit engineering team

❌ Static infrastructure

❌ Potential for resource hogging

LXC @ Gilt Japan

Immutable
Deployment

With
Docker

Prod

Core idea #1: dark canaries, canaries, release, roll-back.

Dark Canary
1.0.0

Instance_0
1.0.0

Instance_1
1.0.0

Instance_n
1.0.0

Dark Canary
1.0.1

Canary
1.0.1

Instance_0
1.0.1

Instance_1
1.0.1

Instance_2
1.0.1

Core idea #2: One container per host / EC2 instance

<<EC2 Instance>>

docker

<<container>>

Docker
registry

ION-Roller - https://github.com/gilt/ionroller

ION-Roller
(orchestrates
everything)

Elastic Load
Balancer (ELB)

Auto Scaling
Group (ASG)

Instance_0 - v1.0.0

Instance_1 - v1.0.0

Instance_2 - v1.0.0

Instance_0 - v1.0.1

Instance_1 - v1.0.1

Instance_2 - v1.0.1

Auto Scaling
Group (ASG)

Docker
registry

✔ Immutable deployment :)

✔ DNS + ELB traffic migration :)

❌ Slow to set up / tear down environments :(

❌ Potentially expensive under continuous deployment :(

❌ Open-source, but in-house. ‘A snowflake in the making’ ❅

ION-Roller deployment:

6
“We could solve this now, or, just wait six months, and Amazon will provide a

solution”

Andrey Kartashov, Distinguished Engineer, Gilt.

github.com/gilt/nova- deployment patterns

Instance_0 - v1.0.0

Instance_1 - v1.0.0

Instance_2 - v1.0.0

Live Traffic

Instance_3 - v1.0.0 Canary

Instance_4 - v1.0.0 Dark
Canary

Elastic Load
Balancer (ELB)

http://hello-world-nova.common.giltaws.com

Elastic Load
Balancer (ELB)

http://hello-world-nova-dark.common.giltaws.com

github.com/gilt/nova - creating environments

nova.yml

templates

$> nova stack create production

CloudFormation

CodeDeploy

github.com/gilt/nova- deployment

Instance_0 - v1.0.0

Instance_1 - v1.0.0

Instance_2 - v1.0.0

Live Traffic

Instance_3 - v1.0.0 Canary

Instance_4 - v1.0.0 Dark
Canary

Elastic Load
Balancer (ELB)

live

Elastic Load
Balancer (ELB)

dark

$> nova deploy common DarkCanary
1.0.1

Instance_4 - v1.0.1

$> nova deploy common Canary 1.0.1

Instance_3 - v1.0.1

$> nova deploy common Production
1.0.1

Instance_0 - v1.0.1

Instance_1 - v1.0.1

Instance_2 - v1.0.1

CodeDeployS3bundle

✔ No docker registry (shock! gasp!) :)

✔ Less boilerplate code :)

✔ Immutable deployment (on mutable infrastructure) :)

✔ Leverage AWS tooling :)

？ Next up? Integrate with Code Pipeline :?

Nova deployment:

Fighting bit rot, chaos-monkey style
With long running mutable AMIs, it’s possible for bit-rot to creep in.

Think security vulnerability.

Novel approach: every day, kill and restart your oldest AMI randomly.

✔ Pick up latest AMI with fixes

✔ Fail early, noisily and loudly if there’s a problem without a production outage.

Vulnerability in container? Cut a new release against a fixed base-image.

Explorations in ECS

Sundial - running batch jobs with Docker & ECS
✔ Job dependencies (allows us to break large jobs into smaller jobs)

✔ Ease of viewing logs and debugging failures

✔ Automatic rescheduling of failed tasks within a job

✔ Isolation between jobs

✔ Low cost of setup and maintenance, as few moving parts as possible for Infra
teams to manage

http://github.com/gilt/sundial

http://github.com/gilt/sundial
http://github.com/gilt/sundial

Sundial: processes
A process in Sundial is a grouping of tasks (jobs) with dependencies between
them.

Schedule: Either manually triggered, continuous schedule, or cron schedule

Overlap strategy: if previous iteration hasn’t completed, do we

Wait
Terminate previous iteration
Run in parallel

When a process kicks off, all tasks with no dependencies kick off.

When a task finishes, any tasks blocked by that task will kick off.

ECS is getting really attractive...
We’re prototyping using for customer-facing services on our mobile team:

✔ Less configuration / moving parts than MST/Nova
✔ Automatic rollout
✔ Easy integration with IAM, CloudWatch, ECR

But:

❌ IAM roles at instance level not container level
❌ Tension between CF stack templates and deployment updates
❌ ELBs require fixed ports: we want to define the listening port.

Docker as Build Platform

Using docker as a
local build platform

The problem: keeping up
with different versions /
combinations of build
tools is crazy hard.

Why not use Docker for
build, using a versioned
build container?

docker-machine

Build Container

docker

Lesson #1
Containers have let us separate what we deploy (JVM, RoR, …)

from how and where we deploy it (mst, nova, EC2, Triton)
and This Is Good.

Lesson #2
It’s still a wild-west in terms of how containers are deployed.
Different teams have different needs - be sensitive to that.

Lesson #3
Seek immutability in the container, not in the stack.

Lesson #4
The competitive advantage: containers let us deploy quickly, frequently and safely

to production, which help us innovate faster.

That’s it.

#thanks @adrian_trenaman
@gilttech @hbc_tech

