How containers have panned out

Adrian Trenaman, Raconteur & SVP Engineering, Gilt / HBC Digital
Q-Con, New York, June 2016
@gilttech @adrian_trenaman @hbc_tech DIGITAL

“What competitive advantage did
containers give you?”

Gilt: luxury designer brands at discounted prices

we shoot the product in our studios

ol
-
(7))
©
C
®
X
(@)
(qv]
o

we receive, store, pick

i S g g S)

| ey, "7 iy Ty TN TR
B . I L

T ey e ey

Fans

VIR

SignIn | Register \Ef'm

WOMEN MEN BABY & KIDS HOME CITY TRAVEL

we sell every day at noon...

G

stampede...

Traffic History by Virtual Server

B
o
(=1
S

(™S
un
-

_m
o
-

S
un
5

h'i.
o
-
=
[
.
=
o .
-
o
=
L]
-
@
)
o
2
7]
Q

Traffic in hits

e s e S e S S S S S S ———

20 21 22 23 O 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15 16 17 18 19
24 hours ending Thu Mar 12 19:31:39 2009

this is what the stampede really looks like...

GILT: Evelution of a Micro-Services Architecture in a $1B startup

2007 201 2015
| | | 2,
| | |
on T =y = Hr) al=—l= i =3
. EEeEE EE = N o
== (EE=E===TEls - o e T
e B8 RS RELLE
L_|-_| == =]) pe— !
L:_‘.i‘ ‘i.:-i' I.L: = | {:J 4 = o ,/l'/ g i oy
ap— —
HoH Java, scala Lots of Small Apps (LOSA) Get thee 1o the Clowd.
Manalith Loosely Typed Saervices Lats of Micro Services
A tew big Team-per-business. Team-par-intiative. Teams of Teams (Depts.)
leams Lots of Intiatives. Sall-sanice Infrastructura by Depl
Team & Individual autonomy. Lots of Initlatives.
Individual autcnony. Lots of Autonomy.

K.Fls

m = n

This is fundamentally a packing problem.

We have n machines, and we have m services to deploy.

It's also an isolation problem

Any given service / team / engineer shouldn’t be able to take out someone else’s
work in production.

GILT

The Gilt technology organization. We make gilt.com work.

26/3/13: TODAY'S NOON OUTAGE--AND WHAT
WE'RE DOING TO MAKE SURE THIS NEVER
HAPPENS AGAIN.

26 March 2013

At Gilt we try to move as fast as we can getting code - be it fixes or awesome new features - to production as quickly
and safely as possible. Sometimes we make mistakes, and, today was such a day. Around noon, a commit on one of our
flagship applications ran riot: allocating native threads; consuming memory and CPU; and bringing down all other
applications collocated on the same set of servers. Our customers were affected and for this the tech team at Gilt are
truly sorry. There have been a ton of tweets from concerned members, and we were keen to explain what went wrong.

It's also an impedance mismatch problem.

Developers often think of machines as something that’s all theirs, magically
provided by the hardware fairy.

Leveraging LXC in Tokyo for Gilt Japan

Load Balancer

16xCPU, 128GB RAM, § Load Balancer
900GB Disk. :

«_ 20-40 CXC _,
Ubuntu 12.04 (— 16.04) i B oo 040 C - ,
VP — 20-40C° —(7 § (FEPEP — 20-40CC — (7 B

(IT(P — 20-40 C~¢ — (FEPEP — 20-40 CXC — (7

™~ PEIP — 20-40 CC

~220 CYXC in total.

£ DB (C™9) d 5 oB(C>)

(PP — Email

LXC @ Gilt Japan

v Scalable, performant use of machine resources.
v’ Solves the impedance mismatch: developers see ‘a machine’
v/ Limits the damage a single engineer can do.

v Infra/Devops engineer embedded into a tightly knit engineering team

x Static infrastructure

x Potential for resource hogging

1 DON'T ALWAYS TEST MY

Immutable
Deployment
With
Docker

BUT WHEN 1 DO, 1 DO ITil
PRODUCTION,

Dark Canary ' Instance 0 Instance_1 Instance_2

1.0.1 | 1.0.1 1.0.1 1.0.1

Core idea #1: dark canaries, canaries, release, roll-back.

—_—
Docker
registry

<<EC2 Instance>>

<<container>>

Core idea #2: One container per host / EC2 instance

|ION-Roller — Auto Scaling
(orchestrates Docker Group (A3
everything) registry

Elastic Load
Balancer (ELB)
Auto Scaling
Group (ASG)

Instance 0 - v1.0.1

Instance_1 -v1.0.1

Instance_2 - v1.0.1

|ON-Roller - https://github.com/gilt/ionroller

|ION-Roller deployment:

v Immutable deployment :)

v DNS + ELB traffic migration :)

x Slow to set up / tear down environments :(

x Potentially expensive under continuous deployment :(

x Open-source, but in-house. ‘A snowflake in the making’ s

— ‘@ DISCO DEPLO!

“We could solve this now, or, just wait six months, and Amazon will provide a
solution”

Andrey Kartashov, Distinguished Engineer, Gilt.

Instance 0 -v1.0.0

Instance_1-v1.0.0 [REECRIEIIS

Instance 2 -v1.0.0

http://hello-world-nova.common.giltaws.com : Instance 3 -v1.0.0 I Canary

Elastic Load
Balancer (ELB)

Elastic Load

Balancer (ELB) Instance 4 -v1.0.0 | Dark
: — i Canary

http://hello-world-nova-dark.common.giltaws.com e -

github.com/gilt/nova- deployment patterns

r

nova.yml - $> nova stack create production -

,/
templates

github.com/gilt/nova - creating environments

Instance_0-v1.00 [

{ Live Traffic

Instance_1-v1.0.0

I nstance_2-v1.00 [

Instance_3 - v1.0.0

Elastic Load
Balancer (ELB)

http://hello-world-nova.common.giltaws .con

i Canary

Elastic Load Y
Balancer (ELB) | Dark
i Canary

Instance_4 -v1.0.0

http://hello-world-nova~dark. common.giltavs..con

B
. %L
4 i

L

7 CloudFormation

CodeDeploy

[€& AWS CodeDeploy v

Applications

ible and reliable deployment configuration and|
plications. Se

s_anrin-n_ e
name: stream
port: 98088

healthchack_url: /_ping
5!
- file: jvar/log/hello—world-nova/application. log # fvar/log get's mapped from container to host bo
group_name: hello-world-nova—apps # used by clovd-watch
datetime_format: 'SY—Sem—Ssd %H:%M:%S"
environments:

— name: COMMOn
aws_profile: aws—common
aws_region: us—east-1
deploy_arn: arn:aws:lam::Bo67 16094004 roLe/ COmmon—Ccod
deployment_bucket: gilt—common # 53
deployment_application_id: hello—world-nova—HelloWorldNovaApplicationStack-1KYULSVITASRZ #
STACKS:
- stack_name: Production
stack_type: production
stack_template: MovaGeneralStack

ledep Loy—=Codel ep LovserviceR

stack_deploy_config: OneAtATime

- —log-driver: syslog
- —net: host
deployment_volumes :
- Jfvar/log/hello-world=-nova: fopt/docker/log
deployment_variables:
— GILT ENVIROMMENT: production
deployment_arguments:
— =Dgilt.zookeeper.enabled: false
deployment_group: hello—-world-nova-Product ionDeploymentGroup—W0HKHSVVEAT
InstanceSecurityGroups: <<redactedz=

= jed to regions / AZs
nstances: 4

DNS: hello—world-nova—prod-us—east-1. common.giltaws. com
inInstances: 2

rityGroups: <<redacteds> |

Instance : 12.micro

Llable, use this key Tor access.

— -
» [B] » 5 —

bundle S3 CodeDeploy |
' Live Traffic
Elastic Load /
Balancer (ELB) .
. Canary
Elastic Load 1 R
Balancer (ELB) - , Dark
. Canary

dark oo ‘

$> nova deploy common Production

github.com/gilt/nova- deployment bU-d

Nova deployment:

v No docker registry (shock! gasp!) :)

v’ Less boilerplate code :)

v Immutable deployment (on mutable infrastructure) :)
v Leverage AWS tooling :)

? Next up? Integrate with Code Pipeline :?

Fighting bit rot, chaos-monkey style

With long running mutable AMIs, it's possible for bit-rot to creep in.

Think security vulnerability.

Novel approach: every day, kill and restart your oldest AMI randomly.

v Pick up latest AMI with fixes

v Fail early, noisily and loudly if there’s a problem without a production outage.

Vulnerability in container? Cut a new release against a fixed base-image.

Explorations in ECS

Sundial - running batch jobs with Docker & ECS

v Job dependencies (allows us to break large jobs into smaller jobs)
v Ease of viewing logs and debugging failures

v/ Automatic rescheduling of failed tasks within a job

v Isolation between jobs

v Low cost of setup and maintenance, as few moving parts as possible for Infra
teams to manage

http://qithub.com/qilt/sundial

http://github.com/gilt/sundial
http://github.com/gilt/sundial

Sundial: processes

A process in Sundial is a grouping of tasks (jobs) with dependencies between
them.

Schedule: Either manually triggered, continuous schedule, or cron schedule
Overlap strategy: if previous iteration hasn’'t completed, do we

Wait

Terminate previous iteration

Run in parallel

When a process kicks off, all tasks with no dependencies kick off.

When a task finishes, any tasks blocked by that task will kick off.

Process Summary: cerebro-batch

generate-profiles
17:15:52 - 17:56:14
40min

A

load-profiles
17:56:14 - 21:28:38
3hrs 32mins

category-similarity
21:28:39 - 22:08:03
39min

21:28:38 - 07:34:16
10hrs 05mins
1 failures

store-score

21:28:39 - 22:06:02

37min

manual-brand-similarity
17:15:52 - 17:18:57
3min

user-brand-favorite
11 eeE2 11 82
154sec

category-precompute
22.08:03 - 02:08:03

brand-exposure-cache
17:15:53 - 04:31:55
‘11hrs 16mins
1 failures

3hrs 59mins

brand-precompute

user-brand-discovery

sanity
17:15:92 - 17:17:26
94sec

personalizable-guids

user-brc
17:15:33 - 17:18:37
3min

recent-category-purchaser

17:1554 - 18:04:18
48min

category-priceband
17:15:54 - 17:17:26
9lsec

Process for cerebro-batch has failed after 14 hours with process 1D Ofcf4de3-da67-4909-b7a3-16c3013faadb

Task Summary

brand-exposure-cache
brand-precompute
brand-similarity
calegory-precompute
category-priceband
.caiegow-mm ilarity
generate-profiles
load-profiles
manual-brand-similarity

personalizable-guids

Failed after 1 attempt
Did Not Run

Failed after 1 attempt

11 hours

10 hours

Suceeded after 1 attempt | 3 hours

Suceeded after 1 attempt | 91 seconds

Suceeded after 1 attempt | 39 minutes

Suceeded after 1 attempt | 40 minutes

Suceeded after 1 attempt | 3 hours

Suceeded after 1 attempt | 3 minutes

Did Not Run

recent-category-purchaser | Suceeded after 1 attempt | 48 minutes

sanity
slore-score
user-brand-discovery

user-brand-favorite

Suceeded after 1 attempt | 94 seconds

Suceeded after 1 attempt | 37 minutes

Did Not Run

Suceeded after 1 attempt | 2 minutes

ECS is getting really attractive...

We’'re prototyping using for customer-facing services on our mobile team:

But:

v’ Less configuration / moving parts than MST/Nova
v Automatic rollout

v/ Easy integration with IAM, CloudWatch, ECR

X |AM roles at instance level not container level
x Tension between CF stack templates and deployment updates
x ELBs require fixed ports: we want to define the listening port.

Docker as Build Platform

Using docker as a
local build platform

The problem: keeping up
with different versions /
combinations of build
tools is crazy hard.

Why not use Docker for
build, using a versioned
build container?

$ pwd
Sweb/gilt-

$ make bui

docker-machine

[l OOV

Build Container

1. fweb/gilt-mobile-web (bash)

mobile-web
ML5905 /web/gilt-mobile-web

1d |

19:45:50

| esson #1

Containers have let us separate what we deploy (JVM, RoR, ...)
from how and where we deploy it (mst, nova, EC2, Triton)
and This |Is Good.

. esson #2

It's still a wild-west in terms of how containers are deployed.
Different teams have different needs - be sensitive to that.

| esson #3

Seek immutability in the container, not in the stack.

| esson #4

The competitive advantage: containers let us deploy quickly, frequently and safely
to production, which help us innovate faster.

That's it.

A, A,
L
. 4

DIGITAL

#thanks @adrian_trenaman
@gilttech @hbc _tech

