Containers in the Enterprise

Avoidingthe Kobayashi Maru

Agenda

* Containers Bring Change

* An Approach
e Required Software
* Processes
e Cultural Changes

e Additional Concerns
e Lessons Learned

Why This Talk?

* Containers are great
* You’re here

* How do we get it home?
* Especiallyin large organizations

Container Adoption is Crazy Fast

* Containers are being adopted at a faster rate than public cloud
 AWS turned 10 years old this year, with 57% of companies using it

* Docker turned 3 years old this year, already has 27% penetration
* Lastyearithad 13%

* If the migration to cloud was hard for large organizations, how easy
will the migration to containers be?

-,

* Approach varies based

Change is Hard on group size

* Old roles and rituals
may no longer make
sense

* Messengers may get

\shot

Group Size Affects Approach
T omallGroups startups | Enterprise

Roles People wearing multiple hats Specific roles established

Change Appetite Open to change; easy to convince Many other changes happening; change fatigue
Change Pace Easy to establish acceptable speed Likely accepted speed: glacial

Communication Have a standup Exercise in herding cats

Fear Low embarrassment if failure; change Fear of making mistakes can be very high

or die

Containers: Going from Rabbit Ears to Cable

* In traditional model, software choices typically restricted

* Push to use similar platforms (and versions) across enterprise

* Ease of operations: easy
* “l know apache”

DOUBLE-DOUBLE®

HAMBURGER
FRENCH FRIES
SHAKES

CHEESEBURGER | GOKE

ROOT BEER
DR PEPPER
SEVEN-UP

LEMONADE

ICED TEA

MILK . COFFEE

* Developers can have programming language of the month
* Ease of Operations: difficult
* “I know apache, nginx, lighttpd, caddy and Hiawatha”

Developers Need to Adjust

* Developers are being empowered, but need to take on additional
responsibility

* Need to know how to build underlying software
* Even ifitis just FROM nginx

* Need to either:

* Know how to document operational routines of their services and train others
e System Administratorsnolonger explaininghow Apache works!

 Embrace DevOps culture 5 | \t\\f
RERoNN — 2
YoURe BRoAIN

You Need a Plan

Agenda

e Containers Bring Change

* An Approach
* Required Software
* Processes
e Cultural Changes

e Additional Concerns
e Lessons Learned

What Do You Need For Containers?

Most companies already have most of what is needed:

* Enterprise-Ready Container Registry
* CI/CD Build Environment

* Container Orchestrator

* Version Control System

* Job Ticketing System

* Company Wiki-like system

Enterprise-Ready Container Registry

Can be done with hosted solution, but some enterprises may require
on premises solution

* Typical needs:

* Group Membership
* User permissions

* Both Developerand Machine
* Nice to have:

* Vulnerability Scanning / Notification
e Auditing

CI/CD Build Environment

Most enterprises have this, but some groups resist embracing it

* Must haves:
* Docker (or some other container runtime) available

e Good to haves:

* Integration with version control
* Triggers for automatic builds
* Notification integration with chat rooms, etc.
* Integration with container orchestrator
* Integration with ticketing system

Container Orchestrator

Even if you do not use a container orchestrator for production needs
now, get familiar with one

 What its used for:
 Abilityto run / smoke test built containerimages as part of validation process

Agenda

e Containers Bring Change

* An Approach
e Required Software
* Processes
e Cultural Changes

e Additional Concerns
e Lessons Learned

Standardize On Single Container Registry

Operations / Information Security will thank you

e Easier to audit
 Writes and Reads

* Vulnerable Images
* Ability to revoke compromised images and know whois pullingthem

* Avoids comparisons to
ruby -e "S(curl -fsSL https://random.server.io/totally/legit/code)"

Establish Repositories For Images & Services

* Separate from application code

For Images:

* Dockerfile and related artifacts

* Tests to validate built images

* Information about who maintains image

* Configuration / Parameterization Options
* Build instructions (link to known build job)

P < o M

L

oource

D’ master v <= threeve.com-deployment /

m cache
Im deployment

I webapp

(z] readme.md Initial commit

readme.md

threeve.com Deployment

This repository contains all the information needed to build, deploy, and monitor the threeve.com application

Relevant Folders

Folder Description
deployment Generic information for deploying the application
cache The cache service

webapp The webapp service

)

Fooville / threeve.com-deployment

Source

D master v oo threeve.com-deployment / webapp / php7 /

t.

B docker

B tests

(5] readme.md Initial commit

(=) readme.md

PHP 7 Container Image for threeve.com

This image should extend our standard PHP 7 image, but have the following

e Have the threeve.com code located in /threeve.com

Establish Repositories For Images & Services

For Services:

* Deployment Artifacts
* Kubernetes pods, ECS tasks, etc.

 Documentation of Interconnectivity
 Network concerns, File access needs, etc.

* Operational Footprint
* CPU, Memory constraints
e Scaling thresholds

* Service Reliability Information
e How to measure service health

B < o @

Lo

Source

D master v oo threeve.com-deployment / webapp / deployment /

k.
B k8s

() readme.md Initial commit

(=) readme.md

Deployment information

PHP Engine and Web Engine need to be linked into the same network

Port Internal/External Container Reason
80 External Apache Handles web requests
9000 Internal PHP7 Handles php requests via FastCGIl from Apache

9001 External PHP7 Handles XDebug sessions, if enabled

B < o M@

T

Source

D master v oo threeve.com-deployment / webapp / deployment / k8s /

X .
I production

I testing

(&) readme.md Initial commit

(=) readme.md

Kubernetes Deployment

Stages

Stage Purpose
Production Receives actual threeve.com traffic

Testing Used for CI/CD testing, torn down often

What files are needed

Service Purpose

threeve-webapp-image-pull-secret.yami Image pull secret for threeve.com webapp container images

threeve-webapp-replication-controller.yaml Specifies the replication controller for the webapp

Fooville / threeve.com-deployment

Source

1 master v eee threeve.com-deployment / webapp / monitoring /

k.

BB sysdig

readme.md Initial commit

readme.md

Automated Builds

For every service and image

* Triggered by changes in:
* Image/Service repository
* Linked application code
* Upstream builds

e Derivative of image X? Rebuild when X changes!
e Capable of automated deployment

e ContinuousDeliveryis containerimage publishing
* ContinuousDeploymentis integration with container orchestrator

Builds Should Embrace CI/CD & Dependencies

= % ild ~ v v
= .,,.Bamboo My Bamboo Build Deploy Reports Create ~

Build projects

Docker Project wallboard eoe v
Plan Build Completed Tests Reason
csslint @#3 4 minutes ago No tests found Child of DOC-NOD-2 ® £ %
doxygen ©# 1 hour ago No tests found Manual run by Michael Venezia ® £ Y
nodejs ©#2 4 minutes ago No tests found Changes by Michael Venezia <mvenezia@gmail.com> ® £ Y
PHP-FPM ©@#7 2 minutes ago No tests found Changes by Michael Venezia <mvenezia@gmail.com> ® £ %

Continuous integration powered by Atlassian Bamboo version 5.12.2 build 51212 - 31 May 16

Report a problem - Request a feature - Contact Atlassian - Contact Administrators

WAtlassian

Automated Builds

* Make it easy for someone else to build and deploy your service

* Security Vulnerability
e Hit by bus

* Runs tests to validate result
* Run tests on containerimage before pushingto registry
Push to registry
Deploy to test environment
Perform end to end tests
Promote to production

Automated Builds

* Integrated ticketing system provides complete visibility
* What tickets were includedin build

* What tickets are closed with deployment
* Whattickets are reopened with rollback

* Need Prune Policy

* If automated builds are happening, containerimages will increase without
bound

* Need eviction policy so only N amount of images are kept around

Publish Services and Images to Catalog

* Image discovery still a bit problematic
e Search works, but so what?

* Provide centralized list, presumably in a Wiki
* Images and Services available
* Which team is maintainingthem

Build link

e Repository Link

Example(s) of Image or Service being used

Agenda

e Containers Bring Change

* An Approach
e Required Software
* Processes
* Cultural Changes

e Additional Concerns
e Lessons Learned

Images and Services Can Be Reused

 All too often teams do not think of reusability of image or service
* Yet vast majority of images extend from an existing image

Container Images: Analogous to OOP

* Think of images as classes in OOP
* Configurationvariables
» Serve a specific purpose

e Can either be:
* Delegatedto, like a sidecar container
* Enhanced, like a rubyimage with application code burnedin

* Use judgement to decide seams
* Ask how could you sell this image to someone else

Embrace Internal Open Source

* Side effect of Service / Image repositories: Forking
* Allow other groups to fork / pull request updates

* Reduces container variants while also reducing maintenance
e Easier for Information Security to audit
* One group has to maintain containerimage, all groups benefit

* Allows for transfer of control
* Group may shift away from python, but other groups may want to continueit

Have Open Source Strategy

Have a great container image? Shouldn’t it be on Docker Hub too?

* Good Karma
* Increases visibility / free advertising!

* Maybe even reduced maintenance

Embrace CI/CD

e Containers lend well to CI/CD
* Immutable environments
* Repeatable events

* May be the bait needed to convince groups to embrace CI/CD

Encourage Ownership

* Containers allow for any developer to pick any technology

* Processes enforce developer to make technology sustainable

* Documentation of deployment
* Build jobs
* Tests

* Fosters innovation within organization

Agenda

e Containers Bring Change

* An Approach
e Required Software
* Processes
e Cultural Changes

 Additional Concerns
e Lessons Learned

Additional Security: Signed Images

* Available through Docker and rkt
e Allows centralized authorization

* Not very prevalent
* Use isincreasing

* Can help convince some groups
regarding security or fidelity

Software-Defined Firewalls

* Desire:
* Firewalls similar to traditional cloud-provided firewalls
* Have auditability

* Problem:

e Container Orchestrators tend to schedule containersin a rather fluid
environment

* Some container environments hide the underlying cloud almost completely
* Kubernetes with network overlay

Solution: Project Calico

* Allows engineering team to
define firewalls within existing
artifacts

* Easily Auditable
e Performs well

Embrace Container-Native Monitoring

* Traditional monitoring changes when moving to container
orchestration

* Good time to re-evaluate approach and desired outcomes from
monitoring
* |s service and VM monitoring one in the same currently?
* Are you already using projects like statsd or Prometheus?

* Providing a good monitoring tool can help ease transition into cloud-
native computing

Agenda

e Containers Bring Change

* An Approach
e Required Software
* Processes
e Cultural Changes

e Additional Concerns
e Lessons Learned

Not Everyone Gets It, Or You

* Be prepared for differences of opinion on what things are

* Who's right?
 Single container and service image of MySQL, Apache, PHP, Wordpress

* Two services
* MySQL
* Web Service
* Apache
* PHP + Wordpress

Adjustments Are Always Needed

 What works for one organization may not
work for another

* Be open to changes if organization desires it
* Better for a subpar agreement than no agreement

Not Everyone Will Share, Nor Look

* People may not create
repositories, build jobs, publish
services to central list

 May not see value

* Others may never look to see if
existing container images exist

Too Much Work

* Creating repositories and
documentation may seem like
too much work

* Containers are supposed to be
fun, this seems like a drag

Don’t Give Up

* Change is hard

* May take multiple attempts to
gain traction

* See what works, what does not,
and adjust

Thanks!

* Any Questions?

* mvenezia@gmail.com

* https://github.com/venezia

Example of outdated role: Repo Maintainer

* In traditional VM world, large enterprises often standardize on:
* Single Linux distribution
* Single private package repository
e Often with limited versions of any given package

* [n container-native environment:
* No single Linux distribution
e Each individual/group creates packages

* No need for private packages
 But nownew people need tolearn similar practices

Consequences of No Central Repo Maintainer

* Packages everywhere!
* Every group creates own nginxvariant
* Who’s monitoringfor vulnerabilities?

* Nightmare for Compliance / Information
Security

* Typically easier when single authority of
creating packages

* Horse has left the stable, need to adjust
thinking

