
Containers	in	the	Enterprise
Avoiding	the	Kobayashi	Maru



Agenda

• Containers	Bring	Change
• An	Approach
• Required	Software
• Processes
• Cultural	Changes

• Additional	Concerns
• Lessons	Learned



Why	This	Talk?

• Containers	are	great
• You’re	here
• How	do	we	get	it	home?
• Especially	in	large	organizations	



Container	Adoption	is	Crazy	Fast

• Containers	are	being	adopted	at	a	faster	rate	than	public	cloud
• AWS	turned	10	years	old	this	year,	with	57%	of	companies	using	it
• Docker	turned	3	years	old	this	year,	already	has	27%	penetration

• Last	year	it	had	13%

• If	the	migration	to	cloud	was	hard	for	large	organizations,	how	easy	
will	the	migration	to	containers	be?



Change	is	Hard
• Approach	varies	based	
on	group	size
• Old	roles	and	rituals	
may	no	longer	make	
sense
• Messengers	may	get	
shot



Group	Size	Affects	Approach

Small	Groups	/ Startups Enterprise

Roles People wearing	multiple	hats Specific	roles established

Change	Appetite Open	to	change;	easy	to	convince Many	other	changes	happening;	change	fatigue

Change Pace Easy	to	establish	acceptable	speed Likely	accepted speed:	glacial

Communication Have	a	standup Exercise	in	herding	cats

Fear Low	embarrassment	if	failure; change	
or	die

Fear	of	making mistakes	can	be	very	high



Containers:	Going	from	Rabbit	Ears	to	Cable

• In	traditional	model,	software	choices	typically	restricted
• Push	to	use	similar	platforms	(and	versions)	across	enterprise
• Ease	of	operations:	easy

• “I	know	apache”

• In	container	model,	software	choices	are	vastly	increased
• Developers	can	have	programming	language	of	the	month
• Ease	of	Operations:	difficult

• “I	know	apache,	nginx,	lighttpd,	caddy	and	Hiawatha”



Developers	Need	to	Adjust

• Developers	are	being	empowered,	but	need	to	take	on	additional	
responsibility
• Need	to	know	how	to	build	underlying	software
• Even	if	it	is	just	FROM	nginx

• Need	to	either:
• Know	how	to	document	operational	routines	of	their	services	and	train	others

• System	Administrators	no	longer	explaining	how	Apache	works!
• Embrace	DevOps	culture



You	Need	a	Plan



Agenda

• Containers	Bring	Change
• An	Approach
• Required	Software
• Processes
• Cultural	Changes

• Additional	Concerns
• Lessons	Learned



What	Do	You	Need	For	Containers?

Most	companies	already	have	most	of	what	is	needed:

• Enterprise-Ready	Container	Registry
• CI/CD	Build	Environment
• Container	Orchestrator
• Version	Control	System
• Job	Ticketing	System
• Company	Wiki-like	system



Enterprise-Ready	Container	Registry

Can	be	done	with	hosted	solution,	but	some	enterprises	may	require	
on	premises	solution

• Typical	needs:
• Group	Membership
• User	permissions

• Both	Developer	and	Machine

• Nice	to	have:
• Vulnerability	Scanning	/	Notification
• Auditing



CI/CD	Build	Environment

Most	enterprises	have	this,	but	some	groups	resist	embracing	it

• Must	haves:
• Docker	(or	some	other	container	runtime)	available

• Good	to	haves:
• Integration	with	version	control

• Triggers	for	automatic	builds
• Notification	integration	with	chat	rooms,	etc.
• Integration	with	container	orchestrator
• Integration	with	ticketing	system



Container	Orchestrator

Even	if	you	do	not	use	a	container	orchestrator	for	production	needs	
now,	get	familiar	with	one

• What	its	used	for:
• Ability	to	run	/	smoke	test	built	container	images	as	part	of	validation	process	



Agenda

• Containers	Bring	Change
• An	Approach
• Required	Software
• Processes
• Cultural	Changes

• Additional	Concerns
• Lessons	Learned



Standardize	On	Single	Container	Registry

Operations	/	Information	Security	will	thank	you
• Easier	to	audit
• Writes	and Reads
• Vulnerable	Images

• Ability	to	revoke	compromised	images	and know	who	is	pulling	them

• Avoids	comparisons	to
ruby -e "$(curl -fsSL https://random.server.io/totally/legit/code)"



Establish	Repositories	For	Images	&	Services

• Separate	from	application	code

For	Images:
• Dockerfile	and	related	artifacts
• Tests	to	validate	built	images
• Information	about	who	maintains	image
• Configuration	/	Parameterization	Options
• Build	instructions	(link	to	known	build	job)







Establish	Repositories	For	Images	&	Services

For	Services:

• Deployment	Artifacts
• Kubernetes	pods,	ECS	tasks,	etc.

• Documentation	of	Interconnectivity
• Network	concerns,	File	access	needs,	etc.

• Operational	Footprint
• CPU,	Memory	constraints
• Scaling	thresholds

• Service	Reliability	Information
• How	to	measure	service	health









Automated	Builds

For	every	service	and	image
• Triggered	by	changes	in:
• Image/Service	repository
• Linked	application	code
• Upstream	builds

• Derivative	of	image	X?	Rebuild	when	X	changes!

• Capable	of	automated	deployment
• Continuous	Delivery	is	container	image	publishing
• Continuous	Deployment	is	integration	with	container	orchestrator



Builds	Should	Embrace	CI/CD	&	Dependencies



Automated	Builds

• Make	it	easy	for	someone	else to	build	and	deploy	your	service
• Security	Vulnerability
• Hit	by	bus

• Runs	tests	to	validate	result
• Run	tests	on	container	image	before	pushing	to	registry
• Push	to	registry
• Deploy	to	test	environment
• Perform	end	to	end	tests
• Promote	to	production



Automated	Builds

• Integrated	ticketing	system	provides	complete	visibility
• What	tickets	were	included	in	build
• What	tickets	are	closed	with	deployment

• What	tickets	are	reopened	with	rollback

• Need	Prune	Policy
• If	automated	builds	are	happening,	container	images	will	increase	without	
bound
• Need	eviction	policy	so	only	N	amount	of	images	are	kept	around



Publish	Services	and	Images	to	Catalog

• Image	discovery	still	a	bit	problematic
• Search	works,	but	so	what?

• Provide	centralized	list,	presumably	in	a	Wiki
• Images	and	Services	available
• Which	team	is	maintaining	them
• Build	link
• Repository	Link
• Example(s)	of	Image	or	Service	being	used



Agenda

• Containers	Bring	Change
• An	Approach
• Required	Software
• Processes
• Cultural	Changes

• Additional	Concerns
• Lessons	Learned



Images	and	Services	Can	Be	Reused

• All	too	often	teams	do	not	think	of	reusability	of	image	or	service
• Yet	vast	majority	of	images	extend	from	an	existing	image



Container	Images:	Analogous	to	OOP

• Think	of	images	as	classes	in	OOP
• Configuration	variables
• Serve	a	specific	purpose
• Can	either	be:

• Delegated	to,	like	a	sidecar	container
• Enhanced,	like	a	ruby	image	with	application	code	burned	in

• Use	judgement	to	decide	seams
• Ask	how	could	you	sell	this	image	to	someone	else



Embrace	Internal	Open	Source

• Side	effect	of	Service	/	Image	repositories:	Forking
• Allow	other	groups	to	fork	/	pull	request	updates
• Reduces	container	variants	while	also	reducing	maintenance
• Easier	for	Information	Security	to	audit
• One	group	has	to	maintain	container	image,	all	groups	benefit

• Allows	for	transfer	of	control
• Group	may	shift	away	from	python,	but	other	groups	may	want	to	continue	it



Have	Open	Source	Strategy

Have	a	great	container	image?	Shouldn’t	it	be	on	Docker	Hub	too?
• Good	Karma
• Increases	visibility	/	free	advertising!
• Maybe	even	reduced	maintenance



Embrace	CI/CD

• Containers	lend	well	to	CI/CD
• Immutable	environments
• Repeatable	events

• May	be	the	bait	needed	to	convince	groups	to	embrace	CI/CD



Encourage	Ownership

• Containers	allow	for	any	developer	to	pick	any	technology
• Processes	enforce	developer	to	make	technology	sustainable
• Documentation	of	deployment
• Build	jobs
• Tests

• Fosters	innovation	within	organization



Agenda

• Containers	Bring	Change
• An	Approach
• Required	Software
• Processes
• Cultural	Changes

• Additional	Concerns
• Lessons	Learned



Additional	Security:	Signed	Images

• Available	through	Docker	and	rkt
• Allows	centralized	authorization
• Not	very	prevalent
• Use	is	increasing
• Can	help	convince	some	groups	
regarding	security	or	fidelity



Software-Defined	Firewalls

• Desire:	
• Firewalls	similar	to	traditional	cloud-provided	firewalls
• Have	auditability

• Problem:
• Container	Orchestrators	tend	to	schedule	containers	in	a	rather	fluid	
environment
• Some	container	environments	hide	the	underlying	cloud	almost	completely

• Kubernetes	with	network	overlay



Solution:	Project	Calico

• Allows	engineering	team	to	
define	firewalls	within	existing	
artifacts
• Easily	Auditable
• Performs	well



Embrace	Container-Native	Monitoring

• Traditional	monitoring	changes	when	moving	to	container	
orchestration
• Good	time	to	re-evaluate	approach	and	desired	outcomes	from	
monitoring
• Is	service	and	VM	monitoring	one	in	the	same	currently?
• Are	you	already	using	projects	like	statsd or	Prometheus?

• Providing	a	good	monitoring	tool	can	help	ease	transition	into	cloud-
native	computing



Agenda

• Containers	Bring	Change
• An	Approach
• Required	Software
• Processes
• Cultural	Changes

• Additional	Concerns
• Lessons	Learned



Not	Everyone	Gets	It,	Or	You

• Be	prepared	for	differences	of	opinion	on	what	things	are
• Who’s	right?
• Single	container	and	service	image	of	MySQL,	Apache,	PHP,	Wordpress
• Two	services

• MySQL
• Web	Service

• Apache
• PHP	+	Wordpress



Adjustments	Are	Always	Needed

• What	works	for	one	organization	may	not	
work	for	another
• Be	open	to	changes	if	organization	desires	it

• Better	for	a	subpar	agreement	than	no	agreement



Not	Everyone	Will	Share,	Nor	Look

• People	may	not	create	
repositories,	build	jobs,	publish	
services	to	central	list
• May	not	see	value

• Others	may	never	look	to	see	if	
existing	container	images	exist



Too	Much	Work

• Creating	repositories	and	
documentation	may	seem	like	
too	much	work
• Containers	are	supposed	to	be	
fun,	this	seems	like	a	drag



Don’t	Give	Up

• Change	is	hard
• May	take	multiple	attempts	to	
gain	traction
• See	what	works,	what	does	not,	
and	adjust



Thanks!

• Any	Questions?

• mvenezia@gmail.com
• https://github.com/venezia



Example	of	outdated	role:	Repo	Maintainer

• In	traditional	VM	world,	large	enterprises	often	standardize	on:
• Single	Linux	distribution
• Single	private	package	repository

• Often	with	limited	versions	of	any	given	package

• In	container-native	environment:
• No	single	Linux	distribution
• Each	individual/group	creates	packages
• No	need	for	private	packages

• But	now	new	people	need	to	learn	similar	practices



Consequences	of	No	Central	Repo	Maintainer

• Packages	everywhere!
• Every	group	creates	own	nginx	variant
• Who’s	monitoring	for	vulnerabilities?

• Nightmare	for	Compliance	/	Information	
Security
• Typically	easier	when	single	authority	of	
creating	packages
• Horse	has	left	the	stable,	need	to	adjust	
thinking


