
PERFORMANCE TESTING
CRASH COURSE

Dustin Whittle

• dustinwhittle.com

• @dustinwhittle

• San Francisco, California, USA

• Technologist, Traveler, Pilot, Skier, Diver,
Sailor, Golfer

What I have worked on

• Developer Evangelist @

• Consultant & Trainer @

• Developer Evangelist @

Why does
performance matter?

Microsoft found that Bing
searches that were 2 seconds

slower resulted in a 4.3% drop
in revenue per user

When Mozilla shaved 2.2
seconds off their landing page,
Firefox downloads increased

15.4%

Making Barack Obama’s
website 60% faster
increased donation
conversions by 14%

Amazon and Walmart
increase revenue 1% for

every 100ms of improvement

Performance directly
impacts the bottom

line

HealthCare.gov

Tools of the trade for
performance testing

Understand your
baseline performance

Static
!

vs
!

Hello World
!

vs
!

Applications

Apache Bench

ab -c 10 -t 10 -k http://dustinwhittle.com/

Benchmarking dustinwhittle.com (be patient)	
Finished 286 requests	
!
!
Server Software: nginx	
Server Hostname: dustinwhittle.com	
Server Port: 80	
!
Document Path: /	
Document Length: 6642 bytes	
!
Concurrency Level: 10	
Time taken for tests: 10.042 seconds	
Complete requests: 286	
Failed requests: 0	
Write errors: 0	
Keep-Alive requests: 0	
Total transferred: 2080364 bytes	
HTML transferred: 1899612 bytes	
Requests per second: 28.48 [#/sec] (mean)	
Time per request: 351.133 [ms] (mean)	
Time per request: 35.113 [ms] (mean, across all concurrent
requests)	
Transfer rate: 202.30 [Kbytes/sec] received	
!

Siege

siege -c 10 -b -t 10S http://dustinwhittle.com/

http://54.215.15.124

** SIEGE 2.72	
** Preparing 10 concurrent users for battle.	
The server is now under siege...	
Lifting the server siege... done.	
!
Transactions:	 	 263 hits	
Availability:	 	 100.00 %	
Elapsed time:	 	 9.36 secs	
Data transferred:	 0.35 MB	
Response time:	 	 0.35 secs	
Transaction rate:	 28.10 trans/sec	
Throughput:	 	 0.04 MB/sec	
Concurrency:		 9.82	
Successful transactions: 263	
Failed transactions:	 0	
Longest transaction:	 0.54	
Shortest transaction:	 0.19

Crawl the entire app
to discover all urls

sproxy -o ./urls.txt

SPROXY v1.02 listening on port 9001	

...appending HTTP requests to: ./urls.txt	

...default connection timeout: 120 seconds

wget -r -o verbose.txt -l 0 -t 1 --spider -w 1 -e
robots=on

-e "http_proxy = http://127.0.0.1:9001"
"http://dustinwhittle.com/"

sort -u -o urls.txt urls.txt

http://127.0.0.1:9001
http://54.215.15.124

Benchmark traffic
across all unique urls

with siege

siege -v -c 50 -i -t 3M -f urls.txt -d
10

Apache JMeter

Multi-Mechanize is an open
source framework for

performance and load testing

pip install multi-
mechanize

multimech-newproject
demo

import requests

!
class Transaction(object):

 def run(self):

 r = requests.get('http://dustinwhittle.com/')

 r.raw.read()

https://github.com/timeline.json'

import mechanize

import time

!
class Transaction(object):

 def run(self):

 br = mechanize.Browser()

 br.set_handle_robots(False)

!
 start_timer = time.time()

 resp = br.open('http://www.dustinwhittle.com/')

 resp.read()

 latency = time.time() - start_timer

 self.custom_timers['homepage'] = latency

!
 start_timer = time.time()

 resp = br.open('http://www.dustinwhittle.com/blog')

 resp.read()

 latency = time.time() - start_timer

 self.custom_timers['blog'] = latency

!
 assert (resp.code == 200)

http://www.dustinwhittle.com/'
http://www.dustinwhittle.com/blog'

[global]	

run_time = 10	

rampup = 5	

results_ts_interval = 1	

progress_bar = on	

console_logging = off	

xml_report = on	

!
!
[user_group-1]	

threads = 1	

script = demo.py	

multimech-run demo

What about when you
need more than one

machine?

Who lives in the
cloud?

Bees with Machine Guns

A utility for arming (creating)
many bees (micro EC2 instances)

 to attack (load test)
 targets (web applications)

pip install beeswithmachineguns

~/.boto
!
!
[Credentials]
!
aws_access_key_id=xxx
aws_secret_access_key=xxx
!
!
[Boto]
!
ec2_region_name = us-west-2
ec2_region_endpoint = ec2.us-west-2.amazonaws.com

bees up -s 2 -g default -z us-west-2b -i
ami-bc05898c -k appdynamics-

dustinwhittle-aws-us-west-2 -l ec2-
user

Connecting to the hive.	
Attempting to call up 2 bees.	
Waiting for bees to load their machine
guns...	
.	
.	
.	
.	
Bee i-3828400c is ready for the attack.	
Bee i-3928400d is ready for the attack.	
The swarm has assembled 2 bees.

bees report

Read 2 bees from the roster.	
Bee i-3828400c: running @ 54.212.22.176	
Bee i-3928400d: running @ 50.112.6.191

bees attack -n 1000 -c 50 -u
http://dustinwhittle.com/

http://dustinwhittle.com

Read 2 bees from the roster.	
Connecting to the hive.	
Assembling bees.	
Each of 2 bees will fire 50000 rounds, 125 at a time.	
Stinging URL so it will be cached for the attack.	
Organizing the swarm.	
Bee 0 is joining the swarm.	
Bee 1 is joining the swarm.	
Bee 0 is firing his machine gun. Bang bang!	
Bee 1 is firing his machine gun. Bang bang!	
Bee 1 is out of ammo.	
Bee 0 is out of ammo.	
Offensive complete.	
 Complete requests:	 	 100000	
 Requests per second:	1067.110000 [#/sec] (mean)	
 Time per request:		 278.348000 [ms] (mean)	
 50% response time:	 	 47.500000 [ms] (mean)	
 90% response time:	 	 114.000000 [ms] (mean)	
Mission Assessment: Target crushed bee offensive.	
The swarm is awaiting new orders.

bees down

What about the client
side?

In modern web applications
more latency comes from the

client-side than the server-
side.

Google PageSpeed

Google PageSpeed
Insights

Google PageSpeed
API

curl "https://www.googleapis.com/
pagespeedonline/v1/runPagespeed?

url=http://dustinwhittle.com/&key=xxx"

WBench

gem install wbench

wbench http://dustinwhittle.com/

Automate client-side
performance testing

with Grunt

Use Bower (for dependencies),	

 Grunt (for automation),	

and Yeoman (for bootstrapping)

How many people
understand exactly how fast
their site runs in production?

Track performance in
development and

production

Instrument everything
= code, databases,

caches, queues, third
party services, and

infrastructure.

Chef / Sensu

http://sensuapp.org/

Statsd + Graphite + Grafana

Episodes / Boomerang

webpagetest.org

SiteSpeed.io

Load testing services
from the cloud

Test for failures

• NetFlix Simian Army + Chaos Monkey  

• What happens if you lose a caching layer?	

• What happens if dependencies slow down?

Best Practices

• Capacity plan and load test the server-side	

• Optimize and performance test the client-side	

• Understand your starting point	

• Instrument everything	

• Measure the difference of every change	

• Automate performance testing in your build and
deployment process	

• Understand how failures impact performance

Integrate automated
performance testing into

continuous integration for
server-side and client-side

Understand the performance
implications of every

deployment and package
upgrade

Monitor end user
experience from end
to end in production

Questions?

Find these slides on SpeakerDeck
!

https://speakerdeck.com/
dustinwhittle

https://speakerdeck.com/dustinwhittle

