. B A
‘. L L
- Y W
\ WY :
L W ¢y
" Lt 3
L % ¥
- L%

www.applied-duality.com

Ted Codd Was Not
A Developer

Pencll

Asynchronous
Programming
With Rx

EF

Velocity Fran

CouchDB
Riak
MongoDB RX
Variety

| X

SQL

Volume

Spanner Hadoop Pub/Sub

Matthias @mittkay 19h
Are Twitter's composable futures inspired by @headinthebox's

reactive extensions? flatMap and mapMany accomplish the same

task
Expand

3

The Four Essential Effects of
Modern Applications

One Result Many Results

Synchronous |T Iterable<T>

Asyncronous | Future<T> |Observable<T>

blocking

int Xx Foo.Bar(4711);

int y = Bar.Qux(x);

used once / blocking

Iterable<int> xs = Foo.Bar(4711);
for(int x : xs)

{

System.out.println(x);
}
blocking
\ used many times

non-blocking

‘/////

Task<int> x = Foo.Bar(4711);
int y = await Bar.Qux(await x);

used once / non-blocking

IObservable<int> xs = Foo.Bar(4711);
IDisposable d = xs.Subscribe(int x ->

{
System.out.println(x);

})s

~<——_____________—____-nondﬂocmng

% used many times

A traditional Futur _ _
Events signalling

computation: a coll ayailability of value
producing a result| or error

Ult of an asynchronous

' may not have finished

2 a handle to an in-progress

computation, a promiSe._ oM a Service

A ListenableFuture allows you to register callbacks to be

to supply us with a result.

executed once the computation is complete, or if the computation

IS already complete, immediately. This
possible to efficiently support many ope

Concurrency to
decouple producer

Future interface cannot support.

and consumer

The basic operation added by ListenaLv.\/, o
addListener(Runnable, Executor), which specifies that when

the computation represented by this Future is done, the specified
Runnable will be run on the specified Executor.

it

https://code.google.com/p/guava-libraries/wiki/ListenableFutureExplained

http://docs.guava-libraries.googlecode.com/git-history/release/javadoc/com/google/common/util/concurrent/ListenableFuture.html

abstract def isCompleted: Boolean

Returns whether the future has already been completed with a value or an exception.

abstract def onComplete[U](func: (Try[T]) = U)(implicit executor: ExecutionContext): Unit

When this future is completed, either through an exceptign, or a value, Whe provided function.

abstract def ready(atMost: Duration)(implicit permit: C4\WAwait): Futu s, type
Await the "completed" state of this Awaitable.

abstract def result(atMost: Duration) (implicit permit: C wait): T
Await and return the result (of type T) of this Awaitable.

Concurrency to B

abstract def value: Option[Trv[T]]
The value of this Future.

decouple producer
and consumer -

def andThen[U](pfy pPartialFunction[Tr¥[T], U]) (i

Applies the side acting function to the result of this future s a new future with the result of this future.

exe

def cullect[y f PartialFunction[T, S]) (implicj kr: ExecutionContext): Future[S]
by mapping the value of the cy i o i at that value.

Concrete \rowable]

. stion of this future. Events S|gna”|ng
time : -
[enae: zusuze(vl): 24 gygilability of value

Creates a new future which holds the result of this fu

that is completed successfully. Or error

: result of the that future if

def filter(pred: (T) = Boolean)(implicit e
Creates a new future by filtering the value of the curfentTatare Witm & preaicate.

def flatMap[S](f: (T) = Future[S])(imp “t_executor: ExecutionContext): Future[S]
Creates a new future by applying a function to the result of this future, and returns the result of the function as the new

future.

http://www.scala- Composition
lang.org/archives/downloads/distrib/files/nightl ml#scala.concurrent.Fut

ure

Futures are "hot", I.e. a value of type Future<T>
IS already running.

Future<T> represents a single value.

Continuation passing style (callbacks) is
painful.

Concurrency Is important aspect.

Time Is Important aspect.

Canceaellatinn?

In the .NET world

All asynchronous operations that return a single
result are expressed as Task<T>

coMonadic
class Task<T> /)
{

Task<R> Continuelith
(Func<Task<T>, R>
continuation)

T Result { get; }

In the .NET world

All asynchronous computations that return a
single result use regular control structures via
async await.

byte[] result;using(var SourceStream =
File.Open(...))
{
result = new byte[SourceStream.Length];
await SourceStream.ReadAsync
(result, 0, (int)SourceStream.Length);

}
Compiler generates
callback/statemachine

In the .NET world

Task-based asynchronous operations never
implicitly introduce concurrency. Async-ness
bubbles up the call-stack/return type.

; Inside async
async Task<int> FAsync
¥[t — = ync() - method

var x = await G();

S Can only use
return H(x); await

¥

In the .NET world

Cancellation for asynchronous computations of
at most one value and threads Is cooperative
using cancellation tokens.

async Task<int> FAsync(CancellationToken token)

{

if(!token.IsCancellationRequested) ...

}

var s = new CancellationTokenSource();

var t = FAsync(s.Token);
s.Cancel();

In any language

Writing CPS by hand is never acceptable. The
compiler should take care of that.

Writing map, flatMap, filter, ... just for
collections with at most one value is silly.
That Is what control structures are for.

Token-based Cancellation does not compose
well (is not fluent).

What if you do not have async
await?

Kill two birds with one stone.

* Generalize single asynchronous results to
asynchronous data streams.

* Compose operations on data streams using
map, flatMap, filter, ...

* Note you need asynchronous data streams
even when you have async await.

Just one small change is needed ...

A FutureCallback<V> implements two methods:
® onSuccess(V), the action to perform if the future succeeds,
based on its result

® onFailure(Throwables action to perform if the future
fails, based on the failure Can be called
multiple times,

_ once for each
Add a third one value in the data
stream

onCompleted(), the action to perform if the future has
terminated successfully.

http://docs.guava-libraries.googlecode.com/git-history/release/javadoc/com/google/common/util/concurrent/FutureCallback.html
http://docs.guava-libraries.googlecode.com/git-history/release/javadoc/com/google/common/util/concurrent/FutureCallback.html
http://docs.guava-libraries.googlecode.com/git-history/release/javadoc/com/google/common/util/concurrent/FutureCallback.html
http://docs.guava-libraries.googlecode.com/git-history/release/javadoc/com/google/common/util/concurrent/FutureCallback.html

Marble Diagram

onFailure
onSuccess

o o —@© X—

A o - Time

We can define all the standard collection operators over such asynchronous data streams.

EF

Velocity Fran

CouchDB
Riak
MongoDB RX
Variety

| X

SQL

Volume

Spanner Hadoop Pub/Sub

var crossApply =
from a in Artists.AsQueryable()
from t in (from ¢ in CDs where c.Artist == a.ID select c.Title)
select new{ Name = a.Name, Title = t };
crossApply.Dump("crossApply");

: CDs
3l - CD[] (6 items) » : crossApply
- |0 artist =it position = E
| 0 0 Together alone 1 . |Name Title

1 0 Urban solitude 1 : |Anouk Together alone

2 0 Graduated fool ' 3 Anouk Urban solitude

3 1 Engel ' 38 Anouk. . Graduated fool

- Frederique Spigt Engel
4 1/Droom 40 : :
Frederigue Spigt Droom
= 1|Beest 76 Frederigue Spigt Beest
3 159
. Artists
B . Artist[] (2 items) »
ID Name
0 Anouk

1 Frederique Spigt

Ted Codd's Relational Algebra

o € {S}Ix(5> bool) > {s}

o NE{S}X(SéT) _______________ Q{T} ______
f _{5}x{T} > {sxTh

IX Interfaces (.NET Version)

interface IEnumerable<T>

{

IEnumerator<T> GetEnumerator()

}

interface IEnumerator<T>

{
bool MoveNext ()

T Current { get; }

Duality

1/R = 1/R,;+.+1/R, R = R;+..+R,

1/C = 1/C;+.+41/C, C = C;+..4C,

RXx Interfaces (.NET version)

interface IObservable<T>
{

IDisposable Subscribe(IObserver<T> observer)

}
subscription (to
unsubscribe

interface IObserver<T> from further
{ notifications)

void OnNext(T value)
void OnError(Exception e)

Callbacks for
void OnCompleted() <\\\\\\\~ead1

} possible
event

Rx == multi-valued
ListenableFuture/Scala Future

We did not address cancellation, concurrency
and time yet.

Observable<T> xs = ...;
Closable d
(onNext, onError, onCompleted);

XS .subscribe

d.close();

Unsubscription vs Cancellation

Multiptiple observers can be subscribed to the
same observable.

Disposing the subscription stops delivering new
events/values to that subscriber (best effort).

Could mean underlying computation is
cancelled, or not.

NETFLIX

Functional Reactive in the Netflix APl with RxJava

by Ben Christensen and Jafar Husain

Our recent post on optimizing the Netflix API introduced how our web service endpoints are implemented
using a "functional reactive programming" (FRP) model for composition of asynchronous callbacks from our

service layer.

This post takes a closer look at how and why we use the FRP model and introduces our open source project
RxJava — a Java implementation of Rx (Reactive Extensions).

https://github.com/Netflix/RxJava
map()

transform the items emitted by an Observable by applying a function to
each of them

http://channel9.msdn.co
m/posts/YOW-2012-

Jafar-Husain-Rx-and- Query results
Netflix-A-Match-Made-in- streamed
Composable- asynchronously to
Asynchrony iant

\@9a

Stitched back together
using path fragments

Data sources
virtualized
as document

https://github.com/jhusain/learnrx

You'll be surprised to learn that most of the operations you perform on
collections can be accomplished with five simple functions:

1.map

2 filter
3.mergeAll
4.reduce
5.zip

Here's my promise to you: if you learn these 5 functions your code will become
shorter, more self-descriptive, and more durable. Also, for reasons that
might not be obvious right now, you'll learn that these five functions hold the
key to simplifying asynchronous programming. Once you've finished this

Schedulers

|Observable<T> Thread

not block
consumer

7

callbacks Subscribe
should run (n,e,c)
here

Thread

Time and Concurrency

abstract def onComplete[U](func: (Try[T]) = U)(implicit
executor: ExecutionContext): Unit

When this future is completed, either through an exception, or a
value, apply the provided function.

abstract def ready(atMost: Duration) (implicit permit:
CanAwait): Future.this.type

Await the "completed" state of this aAwaitable.

Java executor abstracts from concurrency only,
but not from clock/time.

Thread switching should be anywhere In the
guery chain.

Schedulers .NET version

Generalized
interface IScheduler @ ____—— executors

{
DateTimeOffset Now { get; }

IDisposable Schedule<T> Easy
~——— serialization
(T state

, DateTimeOffset delta,
unc<IScheduler, T, IDisposable> work

§ Recursion

Schedulers Virtual Time (just

linear order of ticks)

(this, state, code)

/

All free variables
(this, instance state)
lifted out

Virtual Time in Log Files (Tx)

V4

~

05/01/2013/... {foo: { bar: 4711 }, baz : "Django Unchained" }
05/01/2013/... { foo: { bar: 42}, bar : "Die Hard 3" }
05/03/2013/... { foo: { bar: 1024 }, baz : "Titanic" }

AsS you are processing each
line in the log file, increment
clock to latest time-stamp
seen.

S ' bl
Test Schedulers daram ae code

100 220 500 /;;Zi/////, 600

o o —© X—

' Time
Time
“provenance” Check expected
tracked output against
actual output
—_

X

N\

Time

100 220 300 600

MapReduce

input = "the quick brown fox jumped over the lazy dog";

letters = input.AsParallel().Where(c => lchar.IsWhiteSpace(c))

groups = letters.GroupBy(c => c)

counts = groups.Select(g => new { Char = g.Key, Count = g.Count() 1})

ordered = counts.OrderByDescending(c => c.Count)

MapReduce is a query engine with just one fixed query plan.
Pull-based (batch).

First-order (no nesting)

No iteration

Simple (primitive?) job scheduling.

MapReduce

v letters v groups v’ counts v’ ordered
Char IGrouping <Char,Char=> Char Count Char Count

e “ a 1 r 2 - ||c 1 -
d Char 0 4 k 1

0 5 w 1 b 1

v n 1 W 1

e z f 1 n |1

r Char X 1 f 1

t - i 1 x| 0
h m 1 J 1

e | | 4 p 1 m 1

| Char d 2 5 1

a Yy v 1 =l |v 1 =
z =l |g I 1 I 1

y Char — 1 ! 2 !

d =l |Z 1 z 1

o || B= j PEE y [t]
g - *||g 1 *||g 1 -

Map Reduce

split 0

split 1

split 2

split 3

split4 |

Input
files

Map
phasr

(1) fork

Lser

Program

.. (1) fork
(Nifork

(2) . ~, (2)
assign assign
- map red u-:_e

(4) local write

(3) read @

Intermediate files
(on local disks)

Reduce
phase

(6) write

output
file 0

output
file 1

Output
files

Storm

Bolt

Bolt

Spout »=| Bolt

==

Dataflow

Topology Is static

Signals cannot

vee

Q1 j—

a1 p-

LU2A
—n
>
L K'I
— A CLRI
74L5107D

U1
g a DCD_HEX
/— —
L U4A L. U4B
uze 2 U3A : e
L Q22— 74L508D U Q1 — | Fasoeo . Q=
> > ~t>
k2 azps ~ K a1 b2 "2 @ap—
——C| CLR2 ——] CLR1 ~J cLR2
74L5107D 74L5107D 74151070
——

®

Circuits cannot be signals

Highly available,

replicated,
ACtO r FX (AX) stateful services
communicate via
asynchronous data
streams

AcCtorFx
Primary

Replica Replica

Intercept all state changes via virtual this pointer.

Replicate all mutations to replicas (using your favorite
distributed compute fabric).

Behavior Is just a special instance of state (monkey
patching).

ActorFx for building Subjects

|Observer<S>

Like Erlang actor,
but more general

|IObservable<T>

ISubject<S, T>

Subjects are the
sources and sinks for
all reactive pipelines.

CombineLatest for Deployment

Output

Input

CombineLatest —>

Query/Code

Communicating Concurrent
Subjects

oo e : e) [
] & Skip college and bec x \r"", Hacker Newspaper x '_ s
| « C' i [hacker-newspaper.gilesb.com Qi g E
J| [0 Readability [Addtolnstapa.. [Readability BZ Windows & .NE... &, Dry Erase White... » [Other bookmarks |
\ \ Z
\ |Obse|"ver< Req uest> 1 HAcKER NEWS REFORMATTED BY GILES BOWKETT AND SPONSORED BY RA1L.S AS SHE IS S
-] |
= :
o :
un :
m
~ 5
= since 1802
|
~ |
-~
—
Q

199

Yahoo to Acqu:

SUNNYVALE, Calif. & NEW YORK--(BUSINESS WIRE)-- Yahoo! Inc. (YHOO) an

4| acanire Tumhlr Per the asreement and our nromise not to serew it un. Tnmhlr wil ™
4 LI L
P —

Model View

!
1
1
|
—»
1

|
|
|
|

|Observable<Response>

RealTime Monitoring of Queries
Uisng Queries

Input Commands

P Q

Trace

Output

EF

Velocity Fran

CouchDB
Riak
MongoDB RX
Variety

| X

SQL

Volume

Spanner Hadoop Pub/Sub

