

Ted Codd Was Not

A Developer

Pencil

Asynchronous

Programming

With Rx

The Four Essential Effects of

Modern Applications

One Result Many Results

Synchronous T Iterable<T>

Asyncronous Future<T> IObservable<T>

int x = Foo.Bar(4711);

int y = Bar.Qux(x);

used once

blocking

Iterable<int> xs = Foo.Bar(4711);
for(int x : xs)
{
 System.out.println(x);
}

used many times

blocking

blocking

Task<int> x = Foo.Bar(4711);

int y = await Bar.Qux(await x);

used once

non-blocking

IObservable<int> xs = Foo.Bar(4711);
IDisposable d = xs.Subscribe(int x ->
{
 System.out.println(x);
});

used many times

non-blocking

non-blocking

A traditional Future represents the result of an asynchronous

computation: a computation that may or may not have finished

producing a result yet. A Future can be a handle to an in-progress

computation, a promise from a service to supply us with a result.

A ListenableFuture allows you to register callbacks to be

executed once the computation is complete, or if the computation

is already complete, immediately. This simple addition makes it

possible to efficiently support many operations that the basic

Future interface cannot support.

The basic operation added by ListenableFuture is

addListener(Runnable, Executor), which specifies that when

the computation represented by this Future is done, the specified

Runnable will be run on the specified Executor.

https://code.google.com/p/guava-libraries/wiki/ListenableFutureExplained

Concurrency to

decouple producer

and consumer

Events signalling

availability of value

or error

http://docs.guava-libraries.googlecode.com/git-history/release/javadoc/com/google/common/util/concurrent/ListenableFuture.html

http://www.scala-

lang.org/archives/downloads/distrib/files/nightly/docs/library/index.html#scala.concurrent.Fut

ure

Events signalling

availability of value

or error

Concurrency to

decouple producer

and consumer

Composition

Concrete

time

Futures are "hot", i.e. a value of type Future<T>

is already running.

Future<T> represents a single value.

Continuation passing style (callbacks) is

painful.

Concurrency is important aspect.

Time is important aspect.

Cancellation?

In the .NET world

All asynchronous operations that return a single

result are expressed as Task<T>

class Task<T>
{

 Task<R> ContinueWith
 (Func<Task<T>, R>
continuation)

 T Result { get; }
}

coMonadic

In the .NET world

All asynchronous computations that return a

single result use regular control structures via

async await.

byte[] result;using(var SourceStream =

File.Open(...))
{

 result = new byte[SourceStream.Length];
 await SourceStream.ReadAsync
 (result, 0, (int)SourceStream.Length);
}

Compiler generates

callback/statemachine

In the .NET world

Task-based asynchronous operations never

implicitly introduce concurrency. Async-ness

bubbles up the call-stack/return type.

async Task<int> FAsync()

{

 ...
var x = await G();

...
 return H(x);
}

Can only use

await

Inside async

method

In the .NET world

Cancellation for asynchronous computations of

at most one value and threads is cooperative

using cancellation tokens.

async Task<int> FAsync(CancellationToken token)

{

 if(!token.IsCancellationRequested) ...
}

var s = new CancellationTokenSource();

var t = FAsync(s.Token);
s.Cancel();

In any language

Writing CPS by hand is never acceptable. The

compiler should take care of that.

Writing map, flatMap, filter, ... just for

collections with at most one value is silly.

That is what control structures are for.

Token-based Cancellation does not compose

well (is not fluent).

What if you do not have async

await?

Kill two birds with one stone.

* Generalize single asynchronous results to

asynchronous data streams.

* Compose operations on data streams using

map, flatMap, filter, ...

* Note you need asynchronous data streams

even when you have async await.

Just one small change is needed ...

A FutureCallback<V> implements two methods:

• onSuccess(V), the action to perform if the future succeeds,

based on its result

• onFailure(Throwable), the action to perform if the future

fails, based on the failure

Add a third one

• onCompleted(), the action to perform if the future has

terminated successfully.

Can be called

multiple times,

once for each

value in the data

stream

http://docs.guava-libraries.googlecode.com/git-history/release/javadoc/com/google/common/util/concurrent/FutureCallback.html
http://docs.guava-libraries.googlecode.com/git-history/release/javadoc/com/google/common/util/concurrent/FutureCallback.html
http://docs.guava-libraries.googlecode.com/git-history/release/javadoc/com/google/common/util/concurrent/FutureCallback.html
http://docs.guava-libraries.googlecode.com/git-history/release/javadoc/com/google/common/util/concurrent/FutureCallback.html

Marble Diagram

Time A C B

onSuccess

onFailure

We can define all the standard collection operators over such asynchronous data streams.

Ted Codd's Relational Algebra map

filter

flatMap

Ix interfaces (.NET Version)

interface IEnumerable<T>
{

IEnumerator<T> GetEnumerator()
}

interface IEnumerator<T>
{

 bool MoveNext()

 T Current { get; }
}

Duality

Rx Interfaces (.NET version)

interface IObservable<T>
{

 IDisposable Subscribe(IObserver<T> observer)
}

interface IObserver<T>
{

 void OnNext(T value)
 void OnError(Exception e)

 void OnCompleted()
}

Callbacks for

each

possible

event

subscription (to

unsubscribe

from further

notifications)

Rx == multi-valued

ListenableFuture/Scala Future

We did not address cancellation, concurrency

and time yet.

 Observable<T> xs = ...;

 Closable d = xs.subscribe

 (onNext, onError, onCompleted);

 d.close();

Unsubscription vs Cancellation

Multiptiple observers can be subscribed to the

same observable.

Disposing the subscription stops delivering new

events/values to that subscriber (best effort).

Could mean underlying computation is

cancelled, or not.

https://github.com/Netflix/RxJava

Data sources

virtualized

as document

Query results

streamed

asynchronously to

client

Stitched back together

using path fragments

http://channel9.msdn.co

m/posts/YOW-2012-

Jafar-Husain-Rx-and-

Netflix-A-Match-Made-in-

Composable-

Asynchrony

https://github.com/jhusain/learnrx

You'll be surprised to learn that most of the operations you perform on

collections can be accomplished with five simple functions:

1.map

2.filter

3.mergeAll

4.reduce

5.zip

Here's my promise to you: if you learn these 5 functions your code will become

shorter, more self-descriptive, and more durable. Also, for reasons that

might not be obvious right now, you'll learn that these five functions hold the

key to simplifying asynchronous programming. Once you've finished this

tutorial you'll also have all the tools you need to easily avoid race conditions,

propagate and handle asynchronous errors, and sequence events and

AJAX requests. In short, these 5 functions will probably be the most

powerful, flexible, and useful functions you'll ever learn.

Schedulers

IObservable<T> Thread

Subscribe

(n,e,c)

Thread

callbacks

should run

here

not block

consumer

Time and Concurrency

Java executor abstracts from concurrency only,

but not from clock/time.

Thread switching should be anywhere in the

query chain.

Schedulers .NET version

interface IScheduler

{

 DateTimeOffset Now { get; }

 IDisposable Schedule<T>

 (T state
 , DateTimeOffset delta,
 , Func<IScheduler, T, IDisposable> work

)

}

Generalized

executors

Easy

serialization

Recursion

Delay

Schedulers

Now

(this, state, code)

Virtual Time (just

linear order of ticks)

All free variables

(this, instance state)

lifted out

Virtual Time in Log Files (Tx)

05/01/2013/... { foo: { bar: 4711 }, baz : "Django Unchained" }

05/01/2013/... { foo: { bar: 42 }, bar : "Die Hard 3" }

05/03/2013/... { foo: { bar: 1024 }, baz : "Titanic" }

...

As you are processing each

line in the log file, increment

clock to latest time-stamp

seen.

Test Schedulers

Time

Time

100 220
300

600

Specify marble

diagram as code

Check expected

output against

actual output

100 220 300

600

Time

"provenance"

tracked

MapReduce

MapReduce is a query engine with just one fixed query plan.

Pull-based (batch).

First-order (no nesting)

No iteration

Simple (primitive?) job scheduling.

MapReduce

Map Reduce

Storm

Dataflow

Signals cannot be signals

Circuits cannot be signals

Topology is static

ActorFx (Ax)
Highly available,

replicated,

stateful services

communicate via

asynchronous data

streams

ActorFx
Primary

Replica
Replica

Intercept all state changes via virtual this pointer.

Replicate all mutations to replicas (using your favorite

distributed compute fabric).

Behavior is just a special instance of state (monkey

patching).

ActorFx for building Subjects

IObserver<S>

IObservable<T>

ISubject<S, T>

Subjects are the

sources and sinks for

all reactive pipelines.

Like Erlang actor,

but more general

CombineLatest for Deployment

CombineLatest

Input
Output

Query/Code

Communicating Concurrent

Subjects

IObserver<Request>

IObservable<Response>

Model View

RealTime Monitoring of Queries

Uisng Queries

P Q

Input

Output

Trace

Commands

