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A Little Graph Theory for the
Busy Developer

Jim Webber q
Chief Scientist, Neo Technology

@jimwebber



Roadmap

Imprisoned data
Graph models

Graph theory
— Local properties, global behaviors
— Predictive techniques

Graph matching

— Real-time analytics for fun and profit
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Aggregate-Oriented Data

http://martinfowler.com/bliki/AggregateOrientedDatabase.html

“There is a significant downside - the whole approach works really well
when data access is aligned with the aggregates, but what if you want to
look at the data in a different way? Order entry naturally stores orders as
aggregates, but analyzing product sales cuts across the aggregate structure.
The advantage of not using an aggregate structure in the database is that it

allows you to slice and dice your data different ways for different
audiences. q

This is why aggregate-oriented stores talk so much about map-reduce.”
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complexity = f(size, connectedness, uniformity)

q




DENORMALISE RICHER MODEL

Aggregate data into documents Connected structured data

; é Simple data model Expressive power

Map-reduce friendly Fast graph traversals
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Property graphs

* Property graph model:
— Nodes with properties
— Named, directed relationships with properties

— Relationships have exactly one start and end node
* Which may be the same node q
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Property graphs are very whiteboard-friendly




http://blogs.adobe.com/digitalmarketing/analytics/predictive-analytics/predictive-analytics-and-the-digital-marketer/



Meet Leonhard Euler

e Swiss mathematician

* |[nventor of Graph
Theory (1736)

http://en.wikipedia.org/wiki/File:Leonhard_Euler_2.jpg
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http://en.wikipedia.org/wiki/Seven_Bridges_of Konigsberg
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Triadic Closure
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[name: Stan ] [name: Kenny ]




Triadic Closure




Structural Balance

[name: Cartman]
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[name: Craig ] [name: Tweek ]




Structural Balance

[name: Cartman]
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Structural Balance

[name: Cartman]

M




Structural Balance

[name: Stan ] [name: Kenny ]




Structural Balance is a key
predictive technique

And it’s domain-agnostic q




Allies and Enemies







Allies and Enemies




Allies and Enemies




Allies and Enemies




Allies and Enemies




Predicting WWI

[Easley and Kleinberg]
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(d) French-Russian Alliance 1891- (e) Entente Cordiale 1904 (f) British Russian Alliance 1907
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Strong Triadic Closure

It if a node has strong relationships to two
neighbours, then these neighbours must have at
least a weak relationship between them.

[Wikipedia]




Triadic Closure

(weak relationship)
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Triadic Closure

(weak relationship)

[name: Kenny ]
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Weak relationships

* Relationships can have “strength” as well as
Intent
— Think: weighting on a relationship in a property
grapn
* Weak links play another super-important q
structural role in graph theory

— They bridge neighbourhoods




Local Bridges
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Local Bridge Property

“If a node A in a network satisfies the Strong
Triadic Closure Property and is involved in at
least two strong relationships, then any local
bridge it is involved in must be a weak

relationship.”

[Easley and Kleinberg]




University Karate Club

&m{%‘sp
«!/‘@ = ;.




Graph Partitioning

 (NP) Hard problem

— Recursively remove the spanning links between
dense regions

— Or recursively merge nodes into ever larger
“subgraph” nodes q

— Choose your algorithm carefully — some are better
than others for a given domain

e Can use to (almost exactly) predict the
break up of the karate club!



University Karate Clubs
(predicted by Graph Theory)




University Karate Clubs

(what actually happened!)







Cypher

* Declarative graph pattern matching language
— “SQL for graphs”
— Columnar results

e Supports graph matching commands and

queries q
— Find me stuff like this...

— Aggregation, ordering and limit, etc.
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Category: Category: beer
nappies

['Firstname: *
Category: game BOUGHT Surname: *
console LDOB: 1996 > x

> 1972




Category: Category: beer
nappies

Firstname: *
! BOUGHT Surname: *

LDoB: 1996 > x

Category: game
console

> 1972




(nappies) (beer)

(console)

()<-[b:BOUGHT] - (daddy)




Flatten the graph

(daddy) - [ :BOUGHT] -> () - [ :MEMBER OF]->(nappies)
(daddy) = [ :BOUGHT] -> () - [ : MEMBER OF]-> (beer)
(daddy) - [b:BOUGHT] -> () - [ :MEMBER OF]->(console)




Wrap in a Cypher MATCH clause

MATCH (daddy)-[:BOUGHT]->()-[:MEMBER OF]->(nappies),
(daddy) = [ :BOUGHT] -> () - [ :MEMBER OF]-> (beer),
(daddy) - [b:BOUGHT] -> () - [ :MEMBER OF]->(console)




Cypher WHERE clause

MATCH (daddy)-[:BOUGHT]->()-[:MEMBER OF]->(nappies),
(daddy) = [ :BOUGHT] -> () - [ :MEMBER OF]-> (beer),
(daddy) - [b:BOUGHT] -> () - [ :MEMBER OF]->(console)

WHERE b is null




Full Cypher query

START beer=node:categories (category=‘beer’),
nappies=node:categories (category=‘nappies’),
xbox=node:products (product=‘xbox 360")

MATCH (daddy)-[:BOUGHT]->()-[ :MEMBER_OF] -> (beer),
(daddy) - [:BOUGHT] -> () - [ :MEMBER OF]->(nappies),
(daddy) - [b? :BOUGHT] -> (xbox)

WHERE b 1s null q

RETURN distinct daddy




Results







Facebook Graph Search

Which sushi restaurants in
NYC do my friends like?




Graph Structure

name:
Zushi Zam

location:

name: New York
iSushi




Cypher query

START me=node:person (name = 'Jim'),
location=node:location(location="'New York'),
culisine=node:cuisine (cuisine="'Sushi')

MATCH (me)-[:IS FRIEND OF]->(friend)-[:LIKES]->(restaurant)
- [:LOCATED IN]->(location), (restaurant)-[:SERVES]->(cuisine)

RETURN restaurant q




Search structure







What are graphs good for?

e Recommendations
 Pharmacology

* Business intelligence

e Social computing
 Geospatial

« MDM

e Data center management
 Web of things

« Genealogy q
 Time series data

* Product catalogue
 Web analytics

* Scientific computing

* Indexing your slow RDBMS
And much more!
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ALNTHETHINGS!

mamegenerator.net

Thanks for listening

Neodj: http://neodj.org q
Me: @jimwebber




