Enabling Java
In
Latency Sensitive
Applications

Gil Tene, CTO & co-Founder, Azul Systems

SSSSSSS



About me: Gil Tene

@ co-founder, CTO
@Azul Systems

@ Have been working on
a “think different” GC
approaches since 2002

® Created Pauseless & C4

core GC algorithms
(Tene, Wolf)

@ A Long history building
Virtual & Physical
Machines, Operating

Systems, Enterprise
apps etc * working on real-world trash compaction issues, circa 2004
¥ (X X

©2013 Azul Systems, Inc.



About Azul _

@ We make scalable Virtual
Machines

& Have built “whatever it takes
to get job done” since 2002

@ 3 generations of custom SMP
Multi-core HW (Vega)

o Zing: Pure software for
commodity x86

@ Known for Low Latency,
Consistent execution, and
Large data set excellence

©2013 Azul Systems, Inc.



High level agenda

@ Java in a low latency application world

@ The (historical) fundamental problems

@ What people have done to try to get around them

® What if the fundamental problems were eliminated?
® What 2013 looks like for Low latency Java developers

@ Whats next?

SSSSSSS



Java in the low latency world?

PAUSE)

(then go like hell...

()




Java in the low latency world?

® Why do people use Java for low latency apps?

@ Are they crazy?

@ No. There are good, easy to articulate reasons
@ Projected lifetime cost
@ Developer productivity
@ Time-to-product, Time-to-markef, ...

@ Leverage, ecosystem, ability to hire

SSSSSSS



E.g. Customer answer fto:
"Why do you use Java in Algo Trading?”

@ Strategies have a shelf life
@ We have to keep developing and deploying new ones
@ Only one out of N is actually productive

@ Profitability therefore depends on ability to
successfully deploy new strategies, and on the cost
of doing so

@ Our developers seem to be able to produce 2x-3x as
much when using a Java environment as they would
with C/C++ ...

SSSSSSS



So what is the problem?
Is Java Slow?

@ No...

@ A good programmer will get roughly the same speed
from both Java and C++

@ A bad programmer wont get you fast code on either
@ The 50% ile and 90%'ile are typically excellent...

@ Its those pesky occasional stutters and stammers
and stalls that are the problem...

@ Ever hear of Garbage Collection?

SSSSSSS



Hiccups by Time Interval
—Max per Interval ===99% ===99.90% ===99.99% ===Max
25
)
@ 20
E
S 15
B
: L | [
c 10 _ R | l
Q.
-
J
SO 5 -
T
O | T T T ' T T !
0 100 200 300 1400 500 600
Elapsed Time (sec) ;
] ‘ 0,000%
SLS & ~ ° ' ~
elalz DICO

0 A



Stop-The-World Garbage Collection:
Javas Achilles heel

@ Lets ignore the bad multi-second pauses for now...

@ Low latency applications regularly experience “small”,
"minor” GC events that range in the 10s of msec

@ Frequency directly related to allocation rate
@ So we have great 50%, 90%. Maybe even 99%
@ But 99.9%, 99.99%, Max, all "suck”

® So bad that it affects risk, profitability, service
expectations, etc.

SSSSSSS



One way to deal with Stop-The-World GC

SSSSSSSS



A common way to ‘deal” with STW-GC

Averages and Standard Deviation

‘ 99.7% between 13 s.d.

‘ 63.3% between 1 s.d. \
will fall outside the area

3 standard dewviations s.d. = standard deviation
either side of the center line.

95.4% between t2 s.d.
Only 3 points in 1000

AZUL

SYSTEMS



Reality: Latency is usually
strongly "multi-modal”

@ Usually doest look anything like a normal distribution
@ In software systems, usually sees periodic freezes

@ Complete shifts from one mode/behavior to another
@ Mode A: "good”.

@ Mode B: "Somewhat bad”
® Mode C: “terrible”, ...

o .

SSSSSSS



Another way to deal with STW-GC




Another way to cope: "Creative Language”
® “Guarantee a worst case of 5 msec, 99% of the time”

@ "Mostly” Concurrent, "Mostly” Incremental

Translation: "Will at times exhibit long monolithic stop-
the-world pauses”

@ "Fairly Consistent”

Translation: “"Will sometimes show results well outside
this range”

@ "Typical pauses in the tens of milliseconds”

Translation: "Some pauses are much longer than tens of
milliseconds”

SSSSSSS



What do actual low latency developers
do about it?

® They use "Java” instead of Java

@ They write “in the Java syntax”

@ They avoid allocation as much as possible

@ E.g. They build their own object pools for everything
@ They write all the code they use (no 3rd party libs)
@ They train developers for their local discipline

@ In short: They revert to many of the practices that
hurt productivity. They loose out on much of Java.

SSSSSSS



What do low latency (Java) developers
with all this effort?

@ They still see pauses (usually ranging to tens of msec)
@ They do get fewer (as in less frequent) pauses

@ And they see fewer people able to do the job

@ And they have to write EVERY THING themselves

@ And they get to debug malloc/free patterns again

@ And they can only use memory in certain ways

3 ..

@ Some call it "fun”... Others "duct tape engineering”...



was
It i< an industry-wide problem

Stop-The-World GC mechanisms
contradict the fundamental
requirements of
low latency & low jitter apps

It's 2013... We now have Zing.

SSSSSSS



The common GC behavior across ALL
currently shipping (non-Zing) JVMs

@ ALL use a Monolithic Stop-the-world NewGen

o “small” periodic pauses (small as in 10s of msec)

@ pauses more frequent with higher throughput or allocation rates

® Development focus for ALL is on Oldgen collectors

@ Focus is on trying to address the many-second pause problem
@ Usually by sweeping it farther and farther the rug

a “"Mostly X” (e.g. "mostly concurrent”) hides the fact that they refer
only to the OldGen part of the collector

@ E.g. CMS, G, Balanced.... all are OldGen-only efforts

@ ALL use a Fallback to Full Stop-the-world Collection

® Used to recover when other mechanisms (inevitably) fail

@ Also hidden under the term "Mostly”...

SSSSSSS



A Recipe: address STW-GC head-on

@ At Azul, we decided to focus on the core problems

@ Scale & productivity limited by responsiveness/latency
@ And its not the "typical” latency, its the outliers...

@ Even “short” GC pauses must be considered a problem

® Responsiveness must be unlinked from key metrics:
@ Transaction Rate, Concurrent users, Data set size, efc.
Heap size, Live Set size, Allocation rate, Mutation rate

o
@ Responsiveness must be continually sustainable
o

| Can’r |gnore rare bu’r perlodlc even’rs

SSSSSSS



The Zing "C4” Collector

Continuously Concurrent Compacting Collector

@ Concurrent, compacting old generation

@ Concurrent, compacting new generation

AZUL

SYSTEMS



S
=
%)
£
(9}
o
@
>
n
=
N
<
™
-
N
©




An example of "First days run” behavior
E-Commerce application

Azul Systems - Zing LX Garbage Collector Log Analyser - /Users/gil/Downloads/AnonCustomer/Decl1/gc/verbosegc.log

File Edit Help
Open M) Snapshot Time Range (Minutes): 0.0043363334 3.385084 to 702.0003  722.126 ' SetTime Range <« Reset (* Select Data | GCLA Heap use: 30% Old GC/min: 0

Heap Usage - New & Old GC Current/Peak/Max * GC and Safepoint - Pause Duration * | App Delays * GC Duration * GC Concurrent Phase Times GC Time Percent x GC Count =

GC and Safepoint - Pause Duration
0.00550 1

0.00525
0.00500
0.00475
0.00450 1
0.00425
0.00400
0.00375 1
0.00350 ¢
0.00325
0.00300
0.00275 -
0.00250
0.00225
0.00200
0.00175 4
0.00150
0.00125
0.00100 4
0.00075
0.00050
0.00025

0.00000 : : . : : : : s ‘ ‘ —
75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725

Elapsed Time (Minutes)

#- New GC Pause 1 Duration -® New GC Pause 2 Duration New GC Pause 3 Duration -# New GC Pause 4 Duration = Old GC Pause 2 Duration Old GC Pause 3 Duration
Old GC Pause 4 Duration -» Deoptimize Pause -#- Force Safepoint Pause -« Concurrent Deflation Pause - Other Safepoint Pause

AZUL

SYSTEMS
©2013 Azul Systems, Inc.



An example of behavior after 4 days of system funing
Low latency application

e 0o Azul Systems - Zing LX Garbage Collector Log Analyser - /Users/gil/Downloads/AnonCustomer/LowLatWithSomeTuning/hotspotgc.log
File Edit Graph Help

Open [0 Snapshot Time Range (Minutes): 0.0056 0.0056 to 60.274967 60.274967 Set Time Range ) Reset ¥ Select Data @eap use: 20% Old GC/min: 0

| Heap Use - New & Old GC AfterCollection/Peak/Max [OCPauu Duration ] Process - Application Delays % | GCDuration X | GC Concurrent Phase Times % | GC Time (Percent) x | GC Count x|

GC Pause Duration

0019
0018
0017
0016
0015

0014

0013

0012

0011

0010

0009

0008

0007

0006

0005

0004

.0003

0002

0001

.0000 a — a _ _
7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0 62.5

Elapsed Time (Minutes)

& New GC Pause 1 Duration - New GC Pause 2 Duration New GC Pause 3 Duration -+ New GC Pause 4 Duration = Oid GC Pause 1 Duration Old GC Pause 2 Duration
Old GC Pause 3 Duration Old GC Pause 4 Duration & Safepoint Pause

©2013 Azul Systems, Inc.



Measuring Theory in Practice

JHiccup:

A tool that measures and reports
(as your application is running)
if your JVM is actually running

all the time

SSSSSSS



Discontinuities in Java platform execution - Easy To Measure

Hiccups by Time Interval

——Max per Interval ===99% ===9990% ====99.99% ===Max

ccup Duration

sl A telco

Lol RN rr it
these e M e a bit of a
“hiccups” "problem”

1800
1600

99.9% 99.99% 99.999%

Percentile

SSSSSSS



Fun with jHiccup

Charles Nutter « headius 20 Jan
\ jHiccup, @AzulSystems' free tool to show you why your JVM sucks

compared to Zing: bit.ly/wsH5A8 (thx @bascule)

L3 Retweeted by Gil Tene

SSSSSSS



Oracle HotSpot (pure newgen)

Hiccups by Time Interval

—Max per Interval ===99% ===99.90% ===99.99% ===Max

Hiccups by Time Interval

—Max per Interval ===99% ===99.90% ===99.99% ===Max

Hiccup Duration (msec)

Elapsed Time (sec)

Hiccups by Percentile Distribution

300 400
Elapsed Time (sec)

Hiccups by Percentile Distribution

N
o

Max=22.656

=
(5]

Hiccup Duration (msec)

©2012 Azul Systems, Inc.

_——/

/

99.9% 99.99% 99.999%

Percentile

Low latency trading application

i

99.9% 99.99% 99.999%

Percentile

AZUL

SYSTEMS




Hiccup Duration (msec)

N
(6] /
| P

N
o
1

10 -

Hiccups by Time Interval

—Max per Interval ===99% ===99.90% ===99.99% ===Max

ﬂ |l L

TPARRARCER A

100 200 300 400 500 600
Elapsed Time (sec)

Hiccups by Percentile Distribution

Hiccup Duration (msec)

0%

90% 99% 99.9% 99.99% 99.999%

Percentile

=
[

—~ 1.6

Hiccup Duration (msec
© o o o =P
O N D OO O R, N B

Hiccups by Time Interval

—Max per Interval ===99% ===99.90% ===99.99% ===Max

100 200 300 400 500
Elapsed Time (sec)

Hiccups by Percentile Distribution

600

0.6
3 /
(8}
T 0.4 >
0 - ; ; ; ; ;
0% 90% 99% 99.9% 99.99% 99.999%
Percentile



Oracle HotSpot (pure newgen)

Hiccups by Time Interval Hiccups by Time Interval

— Max per Interval ===99% ===99.90% ===99.99% ===Max —Max per Interval ==99% ===99.90% ===99.99% ===Max

N

(9]
N
(92]

N
o

N
o

[uny
(€]

[EnY
o

Hiccup Duration (msec)

(6, ]

Hiccup Duration (msec)

|'-“||

300 400

Elapsed Time (sec) Elapsed Time (sec)

Hiccups by Percentile Distribution Hiccups by Percentile Distribution

Max=22.656

N
o

N
o

=
(5]

[uny
(€]

Hiccup Duration (msec)
Hiccup Duration (msec)

Max=1.568

———

r r r y #ﬁ— r
99.9% 99.99% 99.999% 90% 99.9% 99.99% 99.999%

Percentile Percentile

Low latency - Drawn fo scale

SYSTEMS
©2012 Azul Systems, Inc.

AZUL




L

" et

o Pl

=

ik b b gl e e

"x " i

b

*%mqrn-u“r\ L

AT,

it

i
-
e

S
=
%)
£
(9}
o
@
>
n
=
N
<
™
-
N
©



Java GC tuning is "hard”...

Examples of actual command line GC tuning parameters:

Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M -XX:MaxNewSize=2g
-XX:NewSize=1y; -XX:SurvivorRatio=128 -XX:+UseParNewGC
-XX:+UseConcMarkSweepsi -AAiviaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled
-XX:+UseCMSInitiatingOccupancyOnly -XX:ParallelGCThreads=12
-XX:LargePageSizeInBytes=256m ...

Java -Xms8g -Xmx8g —-Xmn2g -XX:PermSize=64M -XX:MaxPermSize=256M
-XX:-OmitStackTraceInFastThrov: -XX:SurvivorRatio=2 -XX:-UseAdaptiveSizePolicy
-XX:+UseConcMarkSweepGC -XX:+CMSConcurrentMTEnabled
-XX:+CMSParalle|lRemarkEnabled -XX:+CMSParallelSurvivorRemarkEnabled
-XX:CMSMaxAbortablePrecleanTime=10000 -XX:+UseCMSInitiatingOccupancyOnly
-XX:CMSInitiatingOccupancyFraction=63 -XX:+UseParNewGC -Xnoclassgc ...

©2013 Azul Systems, Inc.



A few GC tuning flags

xpllcit

NewSize
CMSTriggerRatio HeapMaxumuml:umpactmnlnterval U S e c 0 " c M a rkswe e G NeWRatlﬂ
PrintClassHistogramAfterFullGC CMSPLABRecordAIways “MS'"ﬂfe"‘e“‘ﬂ"’“"'gg
ParGCDesired0bjsFromOverflowlist =
GCOverheadReportingPeriodM$

CMSAbortablePrecleanWaitMillis
PrintGCApplicationStoppedTime ~ CMSIsTooFullPercentage

) =z 3
CHSOIPLABMax E s g £% s = g
CMSLoopWarn = _ £ 2 = =2 = g . =
UHSScavengeBeforeRemark = PrintReferencell S 2 oHSpeisitStackSize S = PrintChSStatisties £ = = E
CMSPrecleanNumerator = = SEEM?,':::{‘I’{';‘:“EE%"S“ E = S UncommitDldGenOnGC 22 conceCThreads T Crgaggortsiamantlcsg 2 E =
,;E{f,f,'ﬁ'i{',‘,,",{""”i’""a“‘g £ 5SS CMSBoncﬁrrentMTEna‘h'I'ed E = CMSYieldSleepCount MaxGCMmorPauseMﬂlls S CMSPrecIeanRefhsth ] aATp I:gﬁg:m S 2 =
2 8 £Z2 % S5 .5 MSIncrementaldutyCycle = 5 CMSPrintObjectsinDump CHSConcMarkMultiple eaplampirterrulles £ £ = 3
& S =EE258 = B CMSBitMapYieldQuantum ExplicitGClnvokesConcurrent & = = §
= D5 22 3 2= (MSOIPLABReactivityFactor <5 CMSincrementalSafetyFactor &% .= E T
Ew— 5 552 5 £ 55 ohsrulcessef S o SaptivePermSueWeIEht - pyccoyoy oRomarkEdenSizeThreshald CHSTHEgerPermRatio S &5 £ S
= o= & 232 & g 52 HullkCsBeforeCompaction 5 pysyorkqueueDrainThreshold PrinteCAnnlicationC Time  CMSinitiatingOceupancyFraction-
£ ES S B0 S23  (MSSmallSplitSurplusPercent S rinti.ApplicationGoncurrentlime
S8 €0 5285 5 258 & (MSincrementalDutyCycleMin NewSizeThreadincrease CMSCompactWhenClearAllSoftRefs HeapDumpPath
SE L= ESES22 “'%mg?:m::::?Eﬂ:f‘:zencu"“t CMSClassUnloadingMaxInterval - CMSScheduleRemarkSamplingRatio AdaptiveSizeMajorGCDecayTimeScale
ST hid 2SSV 2 B CMSMaxAbortablePrecleanLoops
T S géxms 'S MaxHeapSize CMSPermGenPrecleaningEnabled p CMSPermGensweepngnahled|ﬂltlatl"EHEallﬂcwﬂa"WPefﬂe"t
2T =T ES = CMSReplenishintermediate PrintGC =
=£ €O E 5 %’{_L‘MSIn|t|aﬂngPerm0ccupancyFractwn Se ar ew l;)rmt&;%TTaskTéltneStampsDIS&hIBEXplICIth B
Zg §§§ Vernose:oe,, GiHeapRegionSize rintatlime ﬂmPSM P S g
ST ad g £ CMSBI Ug IP a’GaA”aYSCE"Ch”"ﬁl dCMSAhortah|ePrecIeanM|_anrkPerIteratmnchramsmm,getslze ax erm Ize =
o= === dssulioaaingecnanie 2
a g
S
W
(™)

HeapDumpOnOut0fMemoryError

CMSLargeSplitSurplusPercent . CMSDUmPAtPromotionFailure  oycpa promteBlocksToClaim

SExtrapolateSweep PrintHea

BeforeFullGC

ump
CMSOIdPLABResizeQuicker
CMSBootstrapllccupancy

= Sen CMSOIdPLABReactivityCeiling éM.S—&MElXAhUnuanhclg:]ﬁftlﬁﬂllg"&gnunﬂc ScavengeBefnreFuIIGL PermMarkSweepDeadRatio PrintCMSInitiationStatistics
BindGCTaskThreadsToCPUs == SMWaxPermHeapExpansion GCLockerlnvokesConcurrent = CMSPrecleanDenominator ~ BCOverheadReportin
E S pLxp = CMSPrecleanThreshold portig
> PaLQEUsFﬂlocall]verfluw SE S AutogCSelectPauseMillis MinHeapDeltaBytes printeCDetails GCHeapFreeLimit CHSRescanMultiple
EC.D = NatChauseMilis —Z2Z S permSize CMSOIdPLABNumRefills  oySEymAveFactor CMSPrecleanRefLists1
= g CMSCleanOibnter S8 S " (MSPrecieanter [nitialeansie o Ao MinHeapFreeRatio
% CMSYield s = =2 E onsoldPLABMn nitialHeapSize CMSUseOldDefaults
E = 2
= - -

Source: Word Cloud created by Frank Pavageau in his Devoxx FR 2012 presentation titled “Death by Pauses”



The complete guide to
Zing GC tuning

Java -Xmx40g

SSSSSSS



So what’s next?

GC is only the biggest problem...

SSSSSSS



JVMs make many tradeoffs
often trading speed vs. outliers

® Some speed fechniques come at extreme outflier costs
@ E.g. ("reqular”) biased locking
@ E.g. counted loops optimizations

@ Deoptimization

@ Lock deflation

® Weak References, Soft References, Finalizers

@ Time To Safe Point (TTSP)

SSSSSSS



Time To Safepoint (TTSP)
Your new #1 enemy

@ (Once GC itself was taken care of)

@ Many things in a JVM (still) use a global safepoint

@ All threads brought to a halt, at a "safe to analuze”
point in code, and then released after work is done.

@ E.g. GC phase shifts, Deoptimization, Class unloading,
Thread Dumps, Lock Deflation, etc. etc.

@ A single thread with a long time-to-safepoint path can
cause an effective pause for all other threads

@ Many code paths in the JVM are long...

SSSSSSS



Time To Safepoint (TTSP)
the most common examples

@ Array copies and object clone()
@ Counted loops

@ Many other other variants in the runtime...

@ Measure, Measure, Measure...
@ Zing has a built-in TTSP profiler

@& At Azul, I walk around with a 0.5msec stick...

SSSSSSS



OS related stuff
(once GC and TTSP are taken care of)

@ OS related hiccups tend to dominate once GC and TTSP
are removed as issues.

@ Take scheduling pressure seriously (Duh?)
@ Hyper-threading (good? bad?)

@ Swapping (Duh!)

@ Power management

@ Transparent Huge Pages (THP).

D ..

SSSSSSS



Takeaway: In 2013, “"Real” Java is finally
viable for low latency applications

® GC is no longer a dominant issue, even for outliers
@ 2-3msec worst observed case with "easy” tuning

@ < 1 msec worst observed case is very doable

@ No need to code in special ways any more
@ You can finally use “real” Java for everything
@ You can finally 3rd party libraries without worries
@ You can finally use as much memory as you want

@ You can finally use regular (good) programmers

SSSSSSS



One-liner Takeaway:

Zing: A cure for the Java hiccups

SSSSSSS



Q&A

One-liner Takeaway:
Zing: A cure for the Java hiccups

JHiccup:

SSSSSSS


http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com

