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Context

=" On April 17, 2012, VoltDB announced benchmark
results for our Node.js client driver.

= Andy Wilson is the primary maintainer of VoltDB’ s
Node.js driver. Henning Diedrich, Founder of
Eonblast, designed and ran the benchmark tests.
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Agenda and Format

" Intro to VoltDB and the Node.js client driver
= Discussion of the Node.js/VoltDB benchmark

= Questions & Answers
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Intro to VoltDB
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Who am I?

= VoltDB Field Engineer, AKA Solutions Architect

= 12 years of developing web applications
+ Learning management systems
+ Educational content editorial management
+ Pharmaceutical sales analytics
+

Harvard Business Publishing’s Higher Education ecommerce site architect

= Using Java, J2EE, JSF/MyFaces/Ajax4JSF, Hibernate, JBoss Seam,
Spring, CSS, JavaScript and Google App Engine with Python
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What Is VoltDB?

VoltDB is very scalable; it should

] In_memory rela‘honal DBMS scale to 120 partitions, 39 servers,

and 1.6 million complex transactions

per second at over 300 CPU cores.

= Ultra-high performance
+ Millions of ACID TPS

+ Single-millisecond latencies Percona

Baron Schwartz
Chief Performance Architect

= Scale “up” and “out” on commodity gear
+ Choose a partitioning key, VoltDB does the heavy lifting

= Built-in fault tolerance and crash recovery

= Open source and commercial distros
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Who Uses VoltDB?

Financial trade

e Capital markets
monitoring

Telco call data
record management

Call initiation request

Inbound HTTP
requests

Website analytics,
fraud detection

Online gaming

micro transactions Online game play

Real-time ad

Digital ad
trading systems

exchange Services

Mobile device
location sensor

Wireless location-

hased services
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Write/index all trades,
store tick data

Real-time authorization
Visitor logging, analysis,

alerting

Rank scores:
*Defined intervals
*Player “bests”

Match form factor,
placement criteria, bid/ask

Location updates, QoS,
transactions

Show consolidated risk
across traders

Fraud detection/analysis

Traffic pattern analytics

Leaderboard lookups

Report ad performance
from exhaust stream

Analytics on transactions



Some VoltDB Customers
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VoltDB Thesis

= At Scale everything changes

+ “One-size-fits-all” datastores do not work

= Database Specialization — transactional workloads

+ H-store academic prototype — http://hstore.cs.brown.edu/
+ Keep functionality of RDBMS

+ Leverage modern architectures (memory, CPU, network, etc.),

+ Design for scale and performance

= Target a (mostly) new class of data problems
+ Data arrives at a very fast rate

+ Must be ingested, stored and acted upon in real-time
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Availability and Durability

= High Availability
+ Data replicated on multiple servers (synchronous, multi-master)
+ Failed nodes can exit/rejoin cluster on the fly

+ No single point of failure

= Durablilty
+ Continuous database snapshots

+ Between snapshots, transactions written to persistent storage

= Disaster Recovery

+ Asynchronous, fault tolerant replication across WAN
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VoltDB Transactions

" Transaction == Single SQL Statement /'\
or Stored Procedure Invocation S, SQL

+ Committed on Success

) W
= Java Stored Procedures

+ Java statements with embedded, parameterized SQL
+ Efficiently process SQL at the server
+ Move the code to the data, not the other way around
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Client Application Interfaces

= Standard programming interfaces

+ Build apps in the language of your choice

+ Call Java stored procedures with parameterized, embedded SQL

= Client app connects to the cluster

+ Data location is transparent
+ Topology is transparent

+ Cluster manages routing, data movement and consistency
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VoltDB and Node.js Architectures

= VoltDB runs best when using an asynchronous client

+ The more work you give to VoltDB, the better it runs, especially
when acting upon several single partition queries

+ Partitions? What’s that? (stay tuned)

" Node is better when run asynchronously
+ Events, nextTick, non-blocking
+ Volt client is event driven, more so in future versions
+ nextTick

+ Non-blocking
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Single Partition Query

Queries run against their partition only and can execute in parallel

Server A

Query Queue 1

Client Query Queue 2

Query Queue 3
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Partition 1
Partition 2

Partition 3
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Multi-partition Query

Queries can span partitions, even when partitions are located on different nodes in
the cluster (not shown in diagram)

Server A

Query Queue 1 Partition 1

T i

Query Queue 3 i Partition 3 \
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The VoltDB Node.js
Driver and Benchmark
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The Original Driver: Voltjs

= Written by Jacob Wright

= Works well for limited number of transactions
= Supports all but one data type

" Only connects to one server

= Jacob donated the code to VoltDB
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The New Driver

= Updated by Andy Wilson

= Optimized query coordinator
+ Round-robin strategy

+ Back-pressure management
= Adds varbinary data type support

= Better error handling

" Code reviewed by Felix Geisendorfer (Node.js expert)

+ Implemented most recommendations
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Volt

Benchmark Setup

= Amazon EC2

= Operating system: Ubuntu

= Node.js version: 0.6.10

= \/oltDB Node.js driver version: 0.1.1

= VoltDB DBMS version: 2.2

= Client-side benchmark script: 0.71 -0.74

= EC2 High-Memory Instances: m2.4xlarge

+ 68 GB memory
+ 8 virtual cores with 3.25 EC2 Compute Units each
+ 64-bit
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Benchmark Application: Voter

Simulates American Idol Voting System

= Massive transaction peak (millions of
simultaneous callers)

= Each transaction (vote) executes 4 SQL statements
1. Get the caller’ s location (read)
2. Verify that the caller has not exceeded vote maximum (read)
3. Verify that caller is voting for a valid contestant (read)

4. If yes to all of the above, cast vote (write)
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Benchmark Results

Amazon EC2:

64 core node.js cluster + 96 core VoltDB cluster

Results:

" 695,000 transactions per second (TPS)
= 2,780,000 operations per second

= 100,000 TPS per 8 core client

= 12,500 TPS per node.js core

= Stable even under extreme load

=" Near linear scale
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More on Scaling

Volt

VoltDB Sites'
16
62
64
42
72

Node.js Threads’ Total TPS
64 87k
32 442k
37 507k
43 511k
54 695k
Notes:

1.VoltDB “sites” = cores used
2.Node.js threads = cores used
3.Intentionally starving set-up
4.Partially starving
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TPS/Node Thread
See note’
13.8k
13.7k*

See note3
12.8k"
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Details of the Final Test

= 8 Node.js client machines, each with 8 virtual cores: 64 cores
= Each Node.js client using 8 workers: 64 threads
= 10 threads starving: 54 active threads

= Total 695k TPS (2.8 million SQL statements)

= 12 VoltDB server machines with 8 virtual cores: 96 cores

= Each VoltDB host using 6 partitions: 72 partitions
= K factor 0 Volt

= Server idle 68% (66-72) with round robin client connections

Volt

Detailed report:
http://community.voltdb.com/sites/default/files/NodejsBenchmarkReport April 2012.pdf
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The Schema

CREATE TABLE contestants
(
contestant number integer NOT NULL
; contestant name varchar (50) NOT NULL

, CONSTRAINT PK contestants PRIMARY KEY
(

)
) ;

contestant number

CREATE TABLE votes
(

phone number bigint NOT NULL
, state varchar(2) NOT NULL
, contestant number integer NOT NULL

)

CREATE TABLE area_code_ state
(
area code smallint NOT NULL
, state varchar(2) NOT NULL
, CONSTRAINT PK area code state PRIMARY KEY
(
area_code
)
)i

Volt
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SQL Operations

// Check if the vote is for a valid contestant
SELECT contestant_number FROM contestants WHERE contestant_ number

il
~

// Check if the voter has exceeded their allowed number of votes

il
~

SELECT num_votes FROM v_votes_ by phone number WHERE phone_ number

// Check an area code to retrieve the corresponding state
SELECT state FROM area_code_state WHERE area_code = ?;

// Record a vote
INSERT INTO votes (phone number, state, contestant number) VALUES (?, ?, ?);
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The Transaction

// Check if the vote is for a valid contestant

voltQueueSQL (checkContestantStmt, EXPECT_ZERO_OR_ONE_ROW, contestantNumber);
voltQueueSQL (checkVoterStmt, EXPECT_ZERO_OR_ONE_ ROW, phoneNumber) ;
voltQueueSQL (checkStateStmt, EXPECT_ZERO_OR_ONE_ROW, (short) (phoneNumber /
100000001));

// Execute queued up statements (3 operations)
VoltTable validation[] = voltExecuteSQL();

// Error conditions
if (validation[0].getRowCount() == 0)
return ERR_INVALID CONTESTANT;

if ((validation[l].getRowCount() == 1) &&
(validation[1l].asScalarLong() >= maxVotesPerPhoneNumber))
return ERR_VOTER_OVER_VOTE_LIMIT;

// Post the vote (1 operation)

voltQueueSQL (insertVoteStmt, EXPECT_SCALAR_MATCH(1l), phoneNumber, state,
contestantNumber) ;

voltExecuteSQL (true);
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DIY Instructions

Volt

|.  Create EC2 VoItDB instances, for each:

1.

e W

Install VoltDB

Install NTP

Set cluster config for deployment and run.sh
Make one the startup-lead VoltDB host
Start this VoltDB cluster

Il. Create EC2 Node.js client instances, for each:

1.

e W

Install git

Install Node.js

Download benchmark script
Hardwire server domains
Start the benchmark script

Complete benchmark instructions:

http://community.voltdb.com/sites/default/files/NodejsBenchmarkinstructions April 2012.pdf

The NewSQL database for high velocity applications
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Summary

Driver

= Stable

= [Fast

= Complete

= Fasy to use

= Copes well under extreme load
= Maintained by VoltDB

Benchmark
= 695k TPS max, ~12k TPS/core
= Near linear scale

VOIt The NewSQL database for high velocity applications
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Resources

= \/oltDB Download

http://voltdb.com/products-services/downloads

= Benchmark Blog Post
http://voltdb.com/company/blog/695k-tps-nodejs-and-voltdb

= Benchmark Report (40pg)
http://community.voltdb.com/sites/default/files/NodejsBenchmarkReport April 2012.pdf

= Benchmark instructions
http://community.voltdb.com/sites/default/files/NodejsBenchmarkinstructions April 2012.pdf

= Benchmark Client
https://github.com/Eonblast/voltjs-bench/blob/master/bench.js

= Voter Example
https://github.com/VoltDB/voltdb/tree/master/examples/voter

= VoltDB’ s Secret Sauce
http://nms.csail.mit.edu/~stavros/pubs/hstore.pdf
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Thank You!
Questions?

Stop by table #9 to chat and enter our Kindle raffle

If you’re a SpringSource user, watch @voltdb /. |
on Twitter for some interesting news -
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