VOIt The NewSQL database for high velocity applications

VoltDB and Node.|s
695K TPS on Amazon Cloud

Andy Wilson, VoltDB, Inc.
awilson@voltdb.com
www.voltdb.com

June 2012
(4 @voltdb Con

Context

=" On April 17, 2012, VoltDB announced benchmark
results for our Node.js client driver.

= Andy Wilson is the primary maintainer of VoltDB’ s
Node.js driver. Henning Diedrich, Founder of
Eonblast, designed and ran the benchmark tests.

VOIt The NewSQL database for high velocity applications

Agenda and Format

" Intro to VoltDB and the Node.js client driver
= Discussion of the Node.js/VoltDB benchmark

= Questions & Answers

VOIt The NewSQL database for high velocity applications

Intro to VoltDB

VOIt The NewSQL database for high velocity applications

Who am I?

= VoltDB Field Engineer, AKA Solutions Architect

= 12 years of developing web applications
+ Learning management systems
+ Educational content editorial management
+ Pharmaceutical sales analytics
+

Harvard Business Publishing’s Higher Education ecommerce site architect

= Using Java, J2EE, JSF/MyFaces/Ajax4JSF, Hibernate, JBoss Seam,
Spring, CSS, JavaScript and Google App Engine with Python

VOIt The NewSQL database for high velocity applications

Volt

What Is VoltDB?

VoltDB is very scalable; it should

] In_memory rela‘honal DBMS scale to 120 partitions, 39 servers,

and 1.6 million complex transactions

per second at over 300 CPU cores.

= Ultra-high performance
+ Millions of ACID TPS

+ Single-millisecond latencies Percona

Baron Schwartz
Chief Performance Architect

= Scale “up” and “out” on commodity gear
+ Choose a partitioning key, VoltDB does the heavy lifting

= Built-in fault tolerance and crash recovery

= Open source and commercial distros

The NewSQL database for high velocity applications

Volt

Who Uses VoltDB?

Financial trade

e Capital markets
monitoring

Telco call data
record management

Call initiation request

Inbound HTTP
requests

Website analytics,
fraud detection

Online gaming

micro transactions Online game play

Real-time ad

Digital ad
trading systems

exchange Services

Mobile device
location sensor

Wireless location-

hased services

The NewSQL database for high velocity applications

Write/index all trades,
store tick data

Real-time authorization
Visitor logging, analysis,

alerting

Rank scores:
*Defined intervals
*Player “bests”

Match form factor,
placement criteria, bid/ask

Location updates, QoS,
transactions

Show consolidated risk
across traders

Fraud detection/analysis

Traffic pattern analytics

Leaderboard lookups

Report ad performance
from exhaust stream

Analytics on transactions

Some VoltDB Customers

CiPoovARl ' 'Y I TARGUSinfo ©

shopzilla GETCO

CO N @ A millicorp
D SignMeUp.

/’,’ SAKURA Internet

QualityHealth

VOIt The NewSQL database for high velocity appl ications

VoltDB Thesis

= At Scale everything changes

+ “One-size-fits-all” datastores do not work

= Database Specialization — transactional workloads

+ H-store academic prototype — http://hstore.cs.brown.edu/
+ Keep functionality of RDBMS

+ Leverage modern architectures (memory, CPU, network, etc.),

+ Design for scale and performance

= Target a (mostly) new class of data problems
+ Data arrives at a very fast rate

+ Must be ingested, stored and acted upon in real-time

VOIt The NewSQL database for high velocity applications

Availability and Durability

= High Availability
+ Data replicated on multiple servers (synchronous, multi-master)
+ Failed nodes can exit/rejoin cluster on the fly

+ No single point of failure

= Durablilty
+ Continuous database snapshots

+ Between snapshots, transactions written to persistent storage

= Disaster Recovery

+ Asynchronous, fault tolerant replication across WAN

VOIt The NewSQL database for high velocity applications

10

VoltDB Transactions

" Transaction == Single SQL Statement /'\
or Stored Procedure Invocation S, SQL

+ Committed on Success

) W
= Java Stored Procedures

+ Java statements with embedded, parameterized SQL
+ Efficiently process SQL at the server
+ Move the code to the data, not the other way around

VOIt The NewSQL database for high velocity applications 1

Client Application Interfaces

= Standard programming interfaces

+ Build apps in the language of your choice

+ Call Java stored procedures with parameterized, embedded SQL

= Client app connects to the cluster

+ Data location is transparent
+ Topology is transparent

+ Cluster manages routing, data movement and consistency

VOIt The NewSQL database for high velocity applications

12

VoltDB and Node.js Architectures

= VoltDB runs best when using an asynchronous client

+ The more work you give to VoltDB, the better it runs, especially
when acting upon several single partition queries

+ Partitions? What’s that? (stay tuned)

" Node is better when run asynchronously
+ Events, nextTick, non-blocking
+ Volt client is event driven, more so in future versions
+ nextTick

+ Non-blocking

VOIt The NewSQL database for high velocity applications

13

Single Partition Query

Queries run against their partition only and can execute in parallel

Server A

Query Queue 1

Client Query Queue 2

Query Queue 3

VOIt The NewSQL database for high velocity applications

Partition 1
Partition 2

Partition 3

14

Multi-partition Query

Queries can span partitions, even when partitions are located on different nodes in
the cluster (not shown in diagram)

Server A

Query Queue 1 Partition 1

T i

Query Queue 3 i Partition 3 \

VOIt The NewSQL database for high velocity applications 15

The VoltDB Node.js
Driver and Benchmark

VOIt The NewSQL database for high velocity applications

The Original Driver: Voltjs

= Written by Jacob Wright

= Works well for limited number of transactions
= Supports all but one data type

" Only connects to one server

= Jacob donated the code to VoltDB

VOIt The NewSQL database for high velocity applications

Volt

The New Driver

= Updated by Andy Wilson

= Optimized query coordinator
+ Round-robin strategy

+ Back-pressure management
= Adds varbinary data type support

= Better error handling

" Code reviewed by Felix Geisendorfer (Node.js expert)

+ Implemented most recommendations

The NewSQL database for high velocity applications

18

Volt

Benchmark Setup

= Amazon EC2

= Operating system: Ubuntu

= Node.js version: 0.6.10

= \/oltDB Node.js driver version: 0.1.1

= VoltDB DBMS version: 2.2

= Client-side benchmark script: 0.71 -0.74

= EC2 High-Memory Instances: m2.4xlarge

+ 68 GB memory
+ 8 virtual cores with 3.25 EC2 Compute Units each
+ 64-bit

The NewSQL database for high velocity applications

19

Benchmark Application: Voter

Simulates American Idol Voting System

= Massive transaction peak (millions of
simultaneous callers)

= Each transaction (vote) executes 4 SQL statements
1. Get the caller’ s location (read)
2. Verify that the caller has not exceeded vote maximum (read)
3. Verify that caller is voting for a valid contestant (read)

4. If yes to all of the above, cast vote (write)

VOIt The NewSQL database for high velocity applications 20

Benchmark Results

Amazon EC2:

64 core node.js cluster + 96 core VoltDB cluster

Results:

" 695,000 transactions per second (TPS)
= 2,780,000 operations per second

= 100,000 TPS per 8 core client

= 12,500 TPS per node.js core

= Stable even under extreme load

=" Near linear scale

VOIt The NewSQL database for high velocity applications

More on Scaling

Volt

VoltDB Sites'
16
62
64
42
72

Node.js Threads’ Total TPS
64 87k
32 442k
37 507k
43 511k
54 695k
Notes:

1.VoltDB “sites” = cores used
2.Node.js threads = cores used
3.Intentionally starving set-up
4.Partially starving

The NewSQL database for high velocity applications

TPS/Node Thread
See note’
13.8k
13.7k*

See note3
12.8k"

22

Details of the Final Test

= 8 Node.js client machines, each with 8 virtual cores: 64 cores
= Each Node.js client using 8 workers: 64 threads
= 10 threads starving: 54 active threads

= Total 695k TPS (2.8 million SQL statements)

= 12 VoltDB server machines with 8 virtual cores: 96 cores

= Each VoltDB host using 6 partitions: 72 partitions
= K factor 0 Volt

= Server idle 68% (66-72) with round robin client connections

Volt

Detailed report:
http://community.voltdb.com/sites/default/files/NodejsBenchmarkReport April 2012.pdf

The NewSQL database for high velocity applications

23

The Schema

CREATE TABLE contestants
(
contestant number integer NOT NULL
; contestant name varchar (50) NOT NULL

, CONSTRAINT PK contestants PRIMARY KEY
(

)
) ;

contestant number

CREATE TABLE votes
(

phone number bigint NOT NULL
, state varchar(2) NOT NULL
, contestant number integer NOT NULL

)

CREATE TABLE area_code_ state
(
area code smallint NOT NULL
, state varchar(2) NOT NULL
, CONSTRAINT PK area code state PRIMARY KEY
(
area_code
)
)i

Volt

The NewSQL database for high velocity applications

SQL Operations

// Check if the vote is for a valid contestant
SELECT contestant_number FROM contestants WHERE contestant_ number

il
~

// Check if the voter has exceeded their allowed number of votes

il
~

SELECT num_votes FROM v_votes_ by phone number WHERE phone_ number

// Check an area code to retrieve the corresponding state
SELECT state FROM area_code_state WHERE area_code = ?;

// Record a vote
INSERT INTO votes (phone number, state, contestant number) VALUES (?, ?, ?);

VOIt The NewSQL database for high velocity applications

The Transaction

// Check if the vote is for a valid contestant

voltQueueSQL (checkContestantStmt, EXPECT_ZERO_OR_ONE_ROW, contestantNumber);
voltQueueSQL (checkVoterStmt, EXPECT_ZERO_OR_ONE_ ROW, phoneNumber) ;
voltQueueSQL (checkStateStmt, EXPECT_ZERO_OR_ONE_ROW, (short) (phoneNumber /
100000001));

// Execute queued up statements (3 operations)
VoltTable validation[] = voltExecuteSQL();

// Error conditions
if (validation[0].getRowCount() == 0)
return ERR_INVALID CONTESTANT;

if ((validation[l].getRowCount() == 1) &&
(validation[1l].asScalarLong() >= maxVotesPerPhoneNumber))
return ERR_VOTER_OVER_VOTE_LIMIT;

// Post the vote (1 operation)

voltQueueSQL (insertVoteStmt, EXPECT_SCALAR_MATCH(1l), phoneNumber, state,
contestantNumber) ;

voltExecuteSQL (true);

VOIt The NewSQL database for high velocity applications 26

DIY Instructions

Volt

|. Create EC2 VoItDB instances, for each:

1.

e W

Install VoltDB

Install NTP

Set cluster config for deployment and run.sh
Make one the startup-lead VoltDB host
Start this VoltDB cluster

Il. Create EC2 Node.js client instances, for each:

1.

e W

Install git

Install Node.js

Download benchmark script
Hardwire server domains
Start the benchmark script

Complete benchmark instructions:

http://community.voltdb.com/sites/default/files/NodejsBenchmarkinstructions April 2012.pdf

The NewSQL database for high velocity applications

27

Summary

Driver

= Stable

= [Fast

= Complete

= Fasy to use

= Copes well under extreme load
= Maintained by VoltDB

Benchmark
= 695k TPS max, ~12k TPS/core
= Near linear scale

VOIt The NewSQL database for high velocity applications

28

Resources

= \/oltDB Download

http://voltdb.com/products-services/downloads

= Benchmark Blog Post
http://voltdb.com/company/blog/695k-tps-nodejs-and-voltdb

= Benchmark Report (40pg)
http://community.voltdb.com/sites/default/files/NodejsBenchmarkReport April 2012.pdf

= Benchmark instructions
http://community.voltdb.com/sites/default/files/NodejsBenchmarkinstructions April 2012.pdf

= Benchmark Client
https://github.com/Eonblast/voltjs-bench/blob/master/bench.js

= Voter Example
https://github.com/VoltDB/voltdb/tree/master/examples/voter

= VoltDB’ s Secret Sauce
http://nms.csail.mit.edu/~stavros/pubs/hstore.pdf

VOIt The NewSQL database for high velocity applications

29

Volt

Thank You!
Questions?

Stop by table #9 to chat and enter our Kindle raffle

If you’re a SpringSource user, watch @voltdb /. |
on Twitter for some interesting news -

The NewSQL database for high velocity applications

30

