
D E M A N D D R I V E N
A R C H I T E C T U R E
K O VA S B O G U TA & D A V I D N O L E N , Q C O N N E W Y O R K 2 0 1 5

C L I E N T S

• More and more clients
everyday

• Internet of Things

• How to serve N clients with
1 service?

R E S T S E R V I C E

• Define logical “resources”

• Client requests a resource

• But client actually needs to present joined resources

• Bloat resource? Multiple requests?

• Incidental complexity? Mobile client latency?

S U P P LY D R I V E N A R C H I T E C T U R E

• “You can have anything you want as long as it looks
exactly like this”

• Engineering team issues

• Front end team must request changes

• N front end teams attacking service team

Our REST Service

T H E P R O B L E M

• Cannot predict what clients (especially future ones) will
actually need

• Cannot put all clients into lockstep with a specific
version of the API (Synchronization is expensive)

• Client applications are distributed systems (salad days
are over)

“This has all happened before”

Author Jun 2, 2015, 6:59 PM

 database design

hierarchical databases

make sure clear not
recommending storing data as
tree

R D B M S

• Client specifies exactly what they need

• Multiple clients not locked into same canned results

• Batching (latency considerations)

? ? ?

• Can an endpoint provide a restrictive yet expressive
query language?

• Can an endpoint evolve with clients?

• Can an endpoint serve multiple tiers of demand from a
client?

Author Jun 2, 2015, 9:10 PM

 known unknowns

open questions

we’re not just going to expose SQL but
what are we going to do?

D E M A N D
D R I V E N

T H E B I G I D E A

• Represent client demand as data

• Client describes demand, service fulfills

• Variation captured in data, on the client

• Contract between client and service

P R I N C I P L E S

Demand

Composition

Author Jun 2, 2015, 7:17 PM

 We don’t want to decide what is a
resource and what isn’t

The payload includes a mixture of thing
which are and aren’t resources

(We should probably examine and
respond to HATEOS)

Interpretation

D E M O

[{:app/contacts
 [:person/first-name]}]

[{:app/contacts
 [:person/first-name]}]

[{:app/contacts
 [:person/first-name]}]

ROUTER

[{:app/contacts
 [:person/first-name]}]

ROUTER QUERY

ROUTER QUERY

[{:app/contacts
 [:person/first-name
 :person/last-name
 :person/address]}]

person address

address

first-name

city

zip-code

street

last-name

[{:app/contacts
 [:person/first-name
 :person/last-name
 {:person/address
 [:address/zip-code]}]}]

ROUTER

QUERY

SUBQUERY

S U M M A R Y

• Client specifies exactly what it needs

• Batched

• Details of demand are easily modified

• Decoupled from service implementation

U X
I M P L I C AT I O N S

U S E R I N T E R FA C E S

• User interfaces are trees

• Graphical clients that talk to traditional REST
endpoints general involve error prone reshaping code

• Demand Driven Architecture can dramatically simplify
rich clients

[:person/first-name
 {:person/address …}]

ContactListView

AppView
[{:app/contacts …}]

[:zip-code]
AddressView

D E M O

[{:app/contacts
 [:person/first-name
 {:person/address [:zip-code]}]}]

C AV E AT S

• Doesn’t mean no backend

• Security

• Routing

• Caching

L E V E L I N G U P

D AT O M I C

• Queries work out of the box (pull syntax)

• Caching (peers)

• Evolvable schema (not migrations)

• Query arbitrary points in time (without logs)

• Client can trivially receive change sets (transaction
report)

R E L AY / G R A P H Q L

• FaceBook software layer over React

• Monolithic application architecture

• Relay/GraphQL deliver demand driven queries for
React user interfaces

J S O N G R A P H / FA L C O R

• NetFlix eliminated 90% of their networking code

• Can now serve many different kinds of clients

• Unlike Facebook microservices based design

• Still, same benefits - phones, tablets, browsers, and
set-top boxes can get exactly what they need

R E C A P

• The pace of client innovation is only accelerating

• Demand driven architecture guides us toward
evolvable systems

• Can remove incidental complexity from client and
server by meeting on simple data

R E F E R E N C E S

• Relay/GraphQL (FaceBook)

• JSONGraph/Falkor (NetFlix)

• Datomic

Q U E S T I O N S ?

