
Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

Scaling Distributes Systems

Natalia Chechina
and RELEASE Team

June 11, 2015

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

Who am I?

2011: Received PhD degree in Computer Science from
Heriot-Watt University, UK

2011-2015: WP3 lead in the EU RELEASE Project at
Glasgow University, UK

March 2015: Research Fellow at Glasgow University, UK

Main research interest: Scaling distributed computations on
commodity hardware

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

Sources

Research findings

Experience from the RELEASE project

Funded by EU FP7 Framework
5 academic & 3 industrial partners
Aim: To scale the radical actor (concurrency-oriented)
paradigm to build reliable general-purpose software, such as
server-based systems, on massively parallel machines (105

cores)
Erlang programming language

Experience of other researches and developers

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

Scaling a Sysem

Scaling ALL aspects of computation

Application

Language

Virtual Machine

In-memory data structures

Persistent data structures

Tools (debugging, monitoring, etc)

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

Scaling a Sysem

Scaling ALL aspects of computation

Application

Language

Virtual Machine

In-memory data structures

Persistent data structures

Tools (debugging, monitoring, etc)

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

Scaling on language level

Actor model

Functional programming

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

Language – Actor Model

Built-in concurrency

Actors have own states and don’t share them

Communication between actor happens only via message
passing

Actors can spawn new actors

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

Language – Functional programming

Fundamental operation – application of functions to arguments

Higher-order functions – well-structured software

Modules – independent, reusable

Lazy evaluations

Variables given values only once

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

Fault Tolerance

105 cores – approx. failure of 1 core per hour

Non-defensive approach – Supervision & ”Let it crash”

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

Philosophy

Principles

Ideas

Core values

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

RELEASE Aim

To scale the radical actor (concurrency-oriented) paradigm to build
reliable general-purpose software, such as server-based systems, on
massively parallel machines (105 cores).

Erlang

VM aspects, e.g. synchronisation on internal data structures

Language aspects, e.g. maintaining a fully connected
network of nodes, explicit process placement

Tool support

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

RELEASE Aim

To scale the radical actor (concurrency-oriented) paradigm to build
reliable general-purpose software, such as server-based systems, on
massively parallel machines (105 cores).

Erlang

VM aspects, e.g. synchronisation on internal data structures

Language aspects, e.g. maintaining a fully connected
network of nodes, explicit process placement

Tool support

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

RELEASE Aim

To scale the radical actor (concurrency-oriented) paradigm to build
reliable general-purpose software, such as server-based systems, on
massively parallel machines (105 cores).

Erlang

VM aspects, e.g. synchronisation on internal data structures

Language aspects, e.g. maintaining a fully connected
network of nodes, explicit process placement

Tool support

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

RELEASE Aim

To scale the radical actor (concurrency-oriented) paradigm to build
reliable general-purpose software, such as server-based systems, on
massively parallel machines (105 cores).

Erlang

VM aspects, e.g. synchronisation on internal data structures

Language aspects, e.g. maintaining a fully connected
network of nodes, explicit process placement

Tool support

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

Typical Target Architecture - 105 cores

Commodity hardware
Non-uniform communication
(Level0 – same host, Level1 – same cluster, etc)

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

Erlang Overview

Erlang

is a functional general purpose concurrent programming
language developed in 1986 at Ericsson

is dynamically typed

was designed for distributed, fault-tolerant, massively
concurrent, and soft-real time systems

follows let it crash and share nothing philosophy

The language primitives are processes.
Erlang concurrency is handled by the language and not by the
operating system [Arm10].

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

Distributed Erlang

Distributed Erlang

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

Distributed Erlang

Transitive connections

Explicit Placement, i.e.

spawn(Node, Module, Function, Args) → pid()

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

Distributed Erlang

Transitive connections

Explicit Placement, i.e.

spawn(Node, Module, Function, Args) → pid()

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

Distributed Erlang Scalability Limitations

Global operations

Global operations, i.e. registering names using global module

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

Distributed Erlang Scalability Limitations

Global operations

Global operations, i.e. registering names using global module

Other global operations, e.g. using rpc:call to call multiple nodes

All-to-all transitive connections

But... aren’t global operations and transitivity are optional in
distributed Erlang? Why use them if they are a bottleneck?

Reliability and fault tolerance – when a process or a node fail, the
remaining nodes know about that. The same holds for the recovery

It’s already there – no extra effort to connect nodes and distribute
information

Easy to scale – a new node knows about running nodes, and vice
versa

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

Distributed Erlang Scalability Limitations

Global operations

Global operations, i.e. registering names using global module

Other global operations, e.g. using rpc:call to call multiple nodes

All-to-all transitive connections

But... aren’t global operations and transitivity are optional in
distributed Erlang? Why use them if they are a bottleneck?

Reliability and fault tolerance – when a process or a node fail, the
remaining nodes know about that. The same holds for the recovery

It’s already there – no extra effort to connect nodes and distribute
information

Easy to scale – a new node knows about running nodes, and vice
versa

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

Distributed Erlang Scalability Limitations

Global operations

Global operations, i.e. registering names using global module

Other global operations, e.g. using rpc:call to call multiple nodes

All-to-all transitive connections

But... aren’t global operations and transitivity are optional in
distributed Erlang? Why use them if they are a bottleneck?

Reliability and fault tolerance – when a process or a node fail, the
remaining nodes know about that. The same holds for the recovery

It’s already there – no extra effort to connect nodes and distribute
information

Easy to scale – a new node knows about running nodes, and vice
versa

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

Distributed Erlang Scalability Limitations

Global operations

Global operations, i.e. registering names using global module

Other global operations, e.g. using rpc:call to call multiple nodes

All-to-all transitive connections

But... aren’t global operations and transitivity are optional in
distributed Erlang? Why use them if they are a bottleneck?

Reliability and fault tolerance – when a process or a node fail, the
remaining nodes know about that. The same holds for the recovery

It’s already there – no extra effort to connect nodes and distribute
information

Easy to scale – a new node knows about running nodes, and vice
versa

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Scalable Distributed (SD) Erlang

SD Erlang is a small conservative extension of Distributed Erlang

Network Scalability
All-to-all connections are not scalable onto 1000s of nodes
Aim: Reduce connectivity

Semi-explicit Placement
Becomes not feasible for a programmer to be aware of all nodes
Aim: Automatic process placement in groups of nodes

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Free Node Connections vs. S group Node Connections

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Free Node Connections vs. S group Node Connections

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Free Node Connections vs. S group Node Connections

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Free Node Connections vs. S group Node Connections

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Free Node Connections vs. S group Node Connections

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Connections between Different Types of Nodes

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Connections between Different Types of Nodes

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Connections between Different Types of Nodes

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Connections between Different Types of Nodes

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Connections between Different Types of Nodes

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Connections between Different Types of Nodes

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Why S groups?

Preserve Erlang phylosophy & transitivity and scale
Considered approaches

Grouping nodes according to their hash values

A hierarchical approach

Overlapping s groups

Other approaches

Distributed Erlang global groups

Spapi Router (SpilGames)

Custom routing on non-transtively connected normal or
hidden nodes

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Hierarchical Grouping

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Free Nodes and S groups

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Embedded Grouping

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

SD Erlang Improves Scalability

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Speed Up of Distributed Erlang Orbit & SD Erlang Orbit

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Speed Up of Distributed Erlang ACO & SD Erlang ACO

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Semi-Explicit Placement

Communication latencies between nodes may vary according
to their relative positions

In terms of communication time nodes may be “nearby” or
“far away”

We may wish some tasks to be close together because they’re
communicating with each other a lot

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Example

System structure

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Example: system structure

Racks

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Example: system structure

Clusters

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Example: system structure

Cloud

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Dendrogram
bw

lf1
6

bw
lf1

3

bw
lf1

5

bw
lf0

3

bw
lf0

5

bw
lf3

4

bw
lf0

6

bw
lf1

2

bw
lf0

8

bw
lf2

7

bw
lf3

3

bw
lf1

8

bw
lf2

8

bw
lf2

3

bw
lf0

4

bw
lf0

7

bw
lf1

0

bw
lf1

7

bw
lf2

6

bw
lf0

1

bw
lf2

0 bw
lf2

1

bw
lf3

1

bw
lf1

4

bw
lf1

9

bw
lf2

4

bw
lf2

5

bw
lf2

9 bw
lf0

2

bw
lf0

9

bw
lf2

2

bw
lf3

0

bw
lf1

1

bw
lf3

2

am
at

er
as

u

pe
rs

ep
ho

ne

ob
er

on

ca
nt

or

os
iri

s

10
00

0
15

00
0

20
00

0
25

00
0

30
00

0

H
ei

gh
t

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Measuring communication distance

We can define a distance function d on the set V of Erlang VMs in
a distributed system by

d(x , y) =

{
0 if x = y

2−`(x ,y) if x 6= y .

where `(x , y) is the length of the longest path which is shared by
the paths from the root to x and y .

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Distances

`(b, c) = 2
d(b, c) = 2−2 = 1/4

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Distances

`(b, g) = 1
d(b, g) = 2−1 = 1/2

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

Distances

`(b, k) = 0
d(b, k) = 2−0 = 1

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

SD Erlang
Network Scalability
Validation
Semi-Explicit Placement

choose nodes/1

Every node may have a list of attributes

choose nodes/1 function returns a list of nodes that satisfy
given restrictions

s_group:choose_nodes([Parameter]) -> [Node]

where

Parameter = {s_group , SGroupName} | {attribute , AttributeName}

| {nearer , 0.4} | {between , 0.5, 0.7}

SGroupName = group_name ()

AttributeName = term()

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

S group Operational Semantics
Validation of SD Erlang Semantics and Implementation

Operational Semantics

(state, command, ni) −→ (state ′, value)

Executing command on node ni in state returns value and
transitions to state ′.

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

S group Operational Semantics
Validation of SD Erlang Semantics and Implementation

Validation of Semantics and Implementation

Validate the consistency between the formal semantics and
the SD Erlang implementation
Use Erlang QuickCheck tool developed by QuviQ
Behaviour is specified by properties expressed in a logical form
eqc statem is a finite state machine in QuickCheck

Figure: Testing SD Erlang Using QuickCheck eqc statem

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

Ongoing and Future Work

S groups

Introduce more patterns, for example, routing for a tree
structure

Analysis of fault tolerance strategies and features in SD
Erlang applications

Semi-explicit Placement

Discovering system structure at runtime

Robustness – dynamically adjusting a view of the system if
new nodes join it, or if existing ones fail

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

Sources

SD Erlang http://www.dcs.gla.ac.uk/research/sd-erlang/

RELEASE Project http://www.release-project.eu/

Deployment tool

Wombat https://www.erlang-solutions.com/products/wombat

Profiling tools

Percept2 https://github.com/release-project/percept2

devo https://www.youtube.com/watch?v=Ox30TBDcFPw

Benchmarking

BenchErl http://release.softlab.ntua.gr/bencherl/index.html

DEbench, Orbit, ACO
https://github.com/release-project/benchmarks

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

Thank you!

N. Chechina, RELEASE team Scaling Distributes Systems

Distributed Erlang
Scalable Distributed (SD) Erlang

Operational Semantics
Plans

Sources

J. Armstrong.
Erlang.
Commun. ACM, 53:68–75, 2010.

N. Chechina, RELEASE team Scaling Distributes Systems

	Distributed Erlang
	Scalable Distributed (SD) Erlang
	SD Erlang
	Network Scalability
	Validation
	Semi-Explicit Placement

	Operational Semantics
	S_group Operational Semantics
	Validation of SD Erlang Semantics and Implementation

	Plans
	Sources

