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In reasonable 
circumstances, what’s 

the most you can expect 
to lose?
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def valueAtRisk(
  portfolio,
  timePeriod,
  pValue
): Double = { ... }
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def valueAtRisk(
  portfolio,
  2 weeks,
  0.05
) = $1,000,000
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Probability 
density

Portfolio return ($) over the time 
period
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VaR estimation approaches

• Variance-covariance

• Historical

• Monte Carlo



10© Cloudera, Inc. All rights reserved.



11© Cloudera, Inc. All rights reserved.



12© Cloudera, Inc. All rights reserved.

Market Risk Factors

• Indexes (S&P 500, NASDAQ)

• Prices of commodities

• Currency exchange rates

• Treasury bonds
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Predicting Instrument Returns from Factor Returns

• Train a linear model on the factors for each instrument
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Fancier

• Add features that are non-linear transformations of the market risk factors

• Decision trees

• For options, use Black-Scholes
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import org.apache.commons.math3.stat.regression.OLSMultipleLinearRegression

// Load the instruments and factors

val factorReturns: Array[Array[Double]] = ...

val instrumentReturns: RDD[Array[Double]] = ...

// Fit a model to each instrument

val models: Array[Array[Double]] =

  instrumentReturns.map { instrument =>

    val regression = new OLSMultipleLinearRegression()

    regression.newSampleData(instrument, factorReturns)

    regression.estimateRegressionParameters()

  }.collect()
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How to sample factor returns?

• Need to be able to generate sample vectors where each component is a factor 
return.

• Factors returns are usually correlated.
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Distribution of US treasury bond two-week returns



18© Cloudera, Inc. All rights reserved.

Distribution of crude oil two-week returns
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The Multivariate Normal Distribution

• Probability distribution over vectors of length N

• Given all the variables but one, that variable is distributed according to a univariate 
normal distribution

• Models correlations between variables
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import org.apache.commons.math3.stat.correlation.Covariance

// Compute means

val factorMeans: Array[Double] = transpose(factorReturns)

  .map(factor => factor.sum / factor.size)

// Compute covariances

val factorCovs: Array[Array[Double]] = new Covariance(factorReturns)

  .getCovarianceMatrix().getData()
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Fancier

• Multivariate normal often a poor choice compared to more sophisticated options

• Fatter tails: Multivariate T Distribution

• Filtered historical simulation
• ARMA
• GARCH
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Running the simulations

• Create an RDD of seeds

• Use each seed to generate a set of simulations

• Aggregate results
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// Broadcast the factor return -> instrument return models

val bModels = sc.broadcast(models)

// Generate a seed for each task 

val seeds = (baseSeed until baseSeed + parallelism)

val seedRdd = sc.parallelize(seeds, parallelism)

// Create an RDD of trials

val trialReturns: RDD[Double] = seedRdd.flatMap { seed =>

  trialReturns(seed, trialsPerTask, bModels.value, factorMeans, factorCovs)

}
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def trialReturn(factorDist: MultivariateNormalDistribution, models: Seq[Array[Double]]): Double = {

  val trialFactorReturns = factorDist.sample()

  var totalReturn = 0.0

  

  for (model <- models) {

    // Add the returns from the instrument to the total trial return

    for (i <- until trialFactorsReturns.length) {

      totalReturn += trialFactorReturns(i) * model(i)

    }

  }

  totalReturn

}
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// Cache for reuse

trialReturns.cache()

val numTrialReturns = trialReturns.count().toInt

// Compute value at risk

val valueAtRisk = trials.takeOrdered(numTrialReturns / 20).last

// Compute expected shortfall

val expectedShortfall =

  trials.takeOrdered(numTrialReturns / 20).sum / (numTrialReturns / 20)
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VaR
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So why Spark?
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Ease of use

• Parallel computing for 5-year olds

• Scala, Python, and R REPLs
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• Cleaning data

• Fitting models

• Running simulations

• Storing results

• Analyzing results

Single platform for
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But it’s CPU-bound and we’re using Java?

• Computational bottlenecks are normally in matrix operations, which can be BLAS-
ified

• Can call out to GPUs just like in C++

• Memory access patterns aren’t high-GC inducing
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Want to do this yourself?
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spark-timeseries

• https://github.com/cloudera/spark-timeseries

• Everything here + some fancier stuff

• Patches welcome!

https://github.com/cloudera/spark-timeseries
https://github.com/cloudera/spark-timeseries
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