
1© Cloudera, Inc. All rights reserved.

Estimating Financial Risk with
Spark
Sandy Ryza | Senior Data Scientist

2© Cloudera, Inc. All rights reserved.

3© Cloudera, Inc. All rights reserved.

4© Cloudera, Inc. All rights reserved.

In reasonable
circumstances, what’s

the most you can expect
to lose?

5© Cloudera, Inc. All rights reserved.

6© Cloudera, Inc. All rights reserved.

def valueAtRisk(
 portfolio,
 timePeriod,
 pValue
): Double = { ... }

7© Cloudera, Inc. All rights reserved.

def valueAtRisk(
 portfolio,
 2 weeks,
 0.05
) = $1,000,000

8© Cloudera, Inc. All rights reserved.

Probability
density

Portfolio return ($) over the time
period

9© Cloudera, Inc. All rights reserved.

VaR estimation approaches

• Variance-covariance

• Historical

• Monte Carlo

10© Cloudera, Inc. All rights reserved.

11© Cloudera, Inc. All rights reserved.

12© Cloudera, Inc. All rights reserved.

Market Risk Factors

• Indexes (S&P 500, NASDAQ)

• Prices of commodities

• Currency exchange rates

• Treasury bonds

13© Cloudera, Inc. All rights reserved.

Predicting Instrument Returns from Factor Returns

• Train a linear model on the factors for each instrument

14© Cloudera, Inc. All rights reserved.

Fancier

• Add features that are non-linear transformations of the market risk factors

• Decision trees

• For options, use Black-Scholes

15© Cloudera, Inc. All rights reserved.

import org.apache.commons.math3.stat.regression.OLSMultipleLinearRegression

// Load the instruments and factors

val factorReturns: Array[Array[Double]] = ...

val instrumentReturns: RDD[Array[Double]] = ...

// Fit a model to each instrument

val models: Array[Array[Double]] =

 instrumentReturns.map { instrument =>

 val regression = new OLSMultipleLinearRegression()

 regression.newSampleData(instrument, factorReturns)

 regression.estimateRegressionParameters()

 }.collect()

16© Cloudera, Inc. All rights reserved.

How to sample factor returns?

• Need to be able to generate sample vectors where each component is a factor
return.

• Factors returns are usually correlated.

17© Cloudera, Inc. All rights reserved.

Distribution of US treasury bond two-week returns

18© Cloudera, Inc. All rights reserved.

Distribution of crude oil two-week returns

19© Cloudera, Inc. All rights reserved.

The Multivariate Normal Distribution

• Probability distribution over vectors of length N

• Given all the variables but one, that variable is distributed according to a univariate
normal distribution

• Models correlations between variables

20© Cloudera, Inc. All rights reserved.

21© Cloudera, Inc. All rights reserved.

import org.apache.commons.math3.stat.correlation.Covariance

// Compute means

val factorMeans: Array[Double] = transpose(factorReturns)

 .map(factor => factor.sum / factor.size)

// Compute covariances

val factorCovs: Array[Array[Double]] = new Covariance(factorReturns)

 .getCovarianceMatrix().getData()

22© Cloudera, Inc. All rights reserved.

Fancier

• Multivariate normal often a poor choice compared to more sophisticated options

• Fatter tails: Multivariate T Distribution

• Filtered historical simulation
• ARMA
• GARCH

23© Cloudera, Inc. All rights reserved.

Running the simulations

• Create an RDD of seeds

• Use each seed to generate a set of simulations

• Aggregate results

24© Cloudera, Inc. All rights reserved.

// Broadcast the factor return -> instrument return models

val bModels = sc.broadcast(models)

// Generate a seed for each task

val seeds = (baseSeed until baseSeed + parallelism)

val seedRdd = sc.parallelize(seeds, parallelism)

// Create an RDD of trials

val trialReturns: RDD[Double] = seedRdd.flatMap { seed =>

 trialReturns(seed, trialsPerTask, bModels.value, factorMeans, factorCovs)

}

25© Cloudera, Inc. All rights reserved.

def trialReturn(factorDist: MultivariateNormalDistribution, models: Seq[Array[Double]]): Double = {

 val trialFactorReturns = factorDist.sample()

 var totalReturn = 0.0

 for (model <- models) {

 // Add the returns from the instrument to the total trial return

 for (i <- until trialFactorsReturns.length) {

 totalReturn += trialFactorReturns(i) * model(i)

 }

 }

 totalReturn

}

26© Cloudera, Inc. All rights reserved.

Executor

Executor

Time

Model
parameters

Model
parameters

27© Cloudera, Inc. All rights reserved.

Executor

Task Task

Trial Trial TrialTrial

Task Task

Trial Trial Trial Trial

Executor

Task Task

Trial Trial TrialTrial

Task Task

Trial Trial Trial Trial

Time

Model
parameters

Model
parameters

28© Cloudera, Inc. All rights reserved.

// Cache for reuse

trialReturns.cache()

val numTrialReturns = trialReturns.count().toInt

// Compute value at risk

val valueAtRisk = trials.takeOrdered(numTrialReturns / 20).last

// Compute expected shortfall

val expectedShortfall =

 trials.takeOrdered(numTrialReturns / 20).sum / (numTrialReturns / 20)

29© Cloudera, Inc. All rights reserved.

30© Cloudera, Inc. All rights reserved.

VaR

31© Cloudera, Inc. All rights reserved.

So why Spark?

32© Cloudera, Inc. All rights reserved.

Ease of use

• Parallel computing for 5-year olds

• Scala, Python, and R REPLs

33© Cloudera, Inc. All rights reserved.

• Cleaning data

• Fitting models

• Running simulations

• Storing results

• Analyzing results

Single platform for

34© Cloudera, Inc. All rights reserved.

But it’s CPU-bound and we’re using Java?

• Computational bottlenecks are normally in matrix operations, which can be BLAS-
ified

• Can call out to GPUs just like in C++

• Memory access patterns aren’t high-GC inducing

35© Cloudera, Inc. All rights reserved.

Want to do this yourself?

36© Cloudera, Inc. All rights reserved.

spark-timeseries

• https://github.com/cloudera/spark-timeseries

• Everything here + some fancier stuff

• Patches welcome!

https://github.com/cloudera/spark-timeseries
https://github.com/cloudera/spark-timeseries

37© Cloudera, Inc. All rights reserved.

