
Tom Limoncelli, SRE
StackExchange.com

the-cloud-book.com
@YesThatTom

Fail Better!
Radical ideas from The Practice
of Cloud System Administration

www.informit.com/TPOSA
Discount code TPOSA35

Who is Tom Limoncelli?
Sysadmin since 1988

Worked at Google, AT&T/Bell Labs
and many more.

SRE at Stack Exchange, Inc
http://careers.stackoverflow.com

Blog: EverythingSysadmin.com

Twitter: @YesThatTom

The Cloud

The
Cloud

The
Cloooooouud

The
Cloud!!!!!!

The
Cloud!!1!

We
<heart>

The Cloud

The cloud solves
all problems.

cloud cloud cloud cloud cloud cloud cloud
cloud cloud cloud cloud cloud cloud cloud
cloud cloud cloud cloud cloud cloud cloud
cloud cloud cloud cloud cloud cloud cloud
cloud cloud cloud cloud cloud cloud cloud
cloud cloud cloud cloud cloud cloud cloud
cloud cloud cloud cloud cloud cloud cloud
cloud cloud cloud cloud cloud cloud cloud
cloud cloud cloud cloud cloud cloud cloud
cloud cloud cloud cloud cloud cloud cloud
cloud cloud cloud cloud cloud cloud cloud.

C

Distributed Computing

Distributed Computing
• Divide work among many machines

• Coordinated central or decentralized

• Examples:

• Genomics: 100s machines
working on a dataset

• Web Service: 10 machines each
taking 1/10th of the web traffic for
StackExchange.com

• Storage: xx,000 machines
holding all of Gmail’s messages

Distributed computing can
do more “work” than the
largest single computer.

More storage.
More computing power.
More memory.
More throughput.

Mo’ computers, Mo’ problems

Thousands of Users
• Bigger risks
• Failures more visible
• Automation mandatory
• Cost containment

becomes critical

In response: Radical ideas on
• Reducing risk / Improve safety
• Reliability becomes a

competitive differentiator
• New automation paradigms
• Cost and economics

Make peace with failure

Parts are imperfect
Networks are imperfect
Systems are imperfect
Code is imperfect
People are imperfect

Learn how to

FAIL  
BETTER

3 ways to fail better

1. Use cheaper, less reliable, hardware.

2. If a process/procedure is risky, do it a lot.

3. Don’t punish people for outages.

Fail Better Part 1 of 3:

Use cheaper, less
reliable, hardware.

• Loss-damage waiver

• Liability

• Personal accident
insurance

• Personal effects coverage

$$
$$
$$

High-End Server

RAID
Dual PS

UPS
Gold Maintenance

High-End Server

RAID
Dual PS

UPS
Gold Maintenance

High-End Server

RAID
Dual PS

UPS
Gold Maintenance

High-End Server

RAID
Dual PS

UPS
Gold Maintenance

High-End Server

RAID
Dual PS

UPS
Gold Maintenance

Load Balancer

Code Changes to Coordinate and Distribute Work

High-End Server

RAID
Dual PS

UPS
Gold Maintenance

High-End Server

RAID
Dual PS

UPS
Gold Maintenance

High-End Server

RAID
Dual PS

UPS
Gold Maintenance

High-End Server

RAID
Dual PS

UPS
Gold Maintenance

High-End Server

RAID
Dual PS

UPS
Gold Maintenance

Load Balancer

Code Changes to Coordinate and Distribute Work

High-End Server

RAID
Dual PS

UPS
Gold Maintenance

Load Balancer$$
$$
$$

Reliability through software
is better.

• Resiliency through software:

• Costs to develop. Free to deploy.

• Resiliency through hardware:

• Costs every time you buy a new machine.

$$
$$

$$$$
Write code so
that the system is
distributed.

Best hardware.

Double-spending

Efficient Server Efficient Server Efficient Server Efficient Server Efficient Server

Load Balancer Load Balancer

These techniques
work for large

grids of
machines…

…and every-day
systems too.Efficient Efficient Efficient Efficient Efficient

Load Balancer Load Balancer

Big resiliency is cheaper

Load Balancer

50% 50%

50%
overhead

Load Balancer

10%
overhead

90% 90% 90% 90% 90%

90% 90% 90% 90% 90%

The right amount of
resiliency is good.

Too much is a waste.
Aim for an SLA target so you know when to stop.

Load balancing &
redundancy is just one

way to achieve resiliency.

The cheapest
way to buy

terabytes of RAM.

Fail Better Part 1 of 3:

Use cheaper, less
reliable, hardware.

Fail Better Part 2 of 3:

If a process/procedure
is risky, do it a lot.

Risky behavior
vs.

Risky procedures

Risky Behaviors are
inherently risky

 Smoking
 Shooting yourself in the foot
 Blindfolded chainsaw juggling

Risky behavior is risky.

Risky Processes can be
improved through practice

• Software Upgrades
• Database Failovers
• Network Trunk Failovers
• Hardware Hot Swaps

• StackExchange.com has
a “DR” site in Oregon.

• StackExchange.com
runs on SQL Server with
“AlwaysOn” Availability
Groups plus…

Redis, HAproxy, ISC
BIND, CloudFlare, IIS,
and many home-
grown applications

StackExchange.com
Failover from NY or Oregon

Process was risky
• Took 10+ hours

• Required “hands on” by 3 teams.

• Found 30+ “improvements needed”

• Certain people were S.P.O.F.

Drill Results
30

20

12

5

10

5
2 1

Hours

Bugs
Filed

Why?
• Each drill “surfaces” areas of improvement.

• Each member of the team gains
experience and builds confidence.

• “Smaller Batches” are better

Software Upgrades
• Traditional

• Months of planning

• Incompatibility issues

• Very expensive

• Very visible mistakes

• By the time we’re done,
time to start over again.

• Distributed Computing

• High frequency (many
times a day or week)

• Fully automated

• Easy to fix failures

• Cheap… encourages
experiments

“Big Bang” releases
are inherently risky.

Small batches are better
Fewer changes each batch:

• If there are bugs, easier to identify source
Reduced lead time:

• It is easier to debug code written recently.
Environment has changed less:

• Fewer “external changes” to break on
Happier, more motivated, employees:

• Instant gratification for all involved

Risk is inversely proportional to
how recently a process has

been used

more
recent

less
recent

Backups
that have

never
been

restored

LB web
servers

that fail all
the time

Continuous
Software

Deployment

Software
Upgrades

every 3
years

most
risky

least
risky

• Randomly reboots machines.

• Keeps Netflix “on its toes”.

• Part of the Simian Army:

• Chaos Monkey (hosts)

• Chaos Kong (data centers)

• Latency Monkey (adds random
performance delays)

Netflix “Chaos Monkey”

Fail Better Part 2 of 3:

If a process/procedure
is risky, do it a lot.

Fail Better Part 3 of 3:

Don’t punish
people for outages.

There will always
be outages.

Getting angry about
outages is equivalent
to expecting them to

never happen…
which is irrational.

Out-dated attitudes about outages
• Expect perfection: 100% uptime
• Punish exceptions:

• fire someone to “prove we’re serious”
• Results:

• People hide problems
• People stop communicating
• Discourages transparency
• Small problems get ignored, turn into big

problems

New thinking on outages
• Set uptime goals: 99.9% +/- 0.05
• Anticipate outages:

• Strategic resiliency techniques, oncall system
• Drills to keep in practice, improve process

• Results:
• Encourages transparency, communication
• Small problems addressed, fewer big

problems
• Over-all uptime improved

There are only
Contributing
Factors

John Allspaw
http://www.kitchensoap.com/2012/02/10/each-necessary-but-only-jointly-sufficient/

After the outage, publish a
postmortem document

• People involved write a “blameless postmortem”
• Identifies what happened, how, what can be done

to prevent similar problems in the future.
• Published widely internally and externally.

• Instead of blame, people take responsibility:
• Responsibility for implementing long-term fixes.
• Responsibility for educating other teams how to

learn from this.

I dunno about anybody else, but I really like
getting these post-mortem reports. Not only
is it nice to know what happened, but it’s
also great to see how you guys handled it
in the moment and how you plan to
prevent these events going forward. Really
neato. Thanks for the great work :)

—-Anna

Fail Better Part 3 of 3:

Don’t punish
people for outages.

Take-homes
• “cloud computing” = “distributed computing”
1. Use cheaper, less reliable, hardware

• Create reliability through software (when
possible)

• Pay only for the reliability you need
2. If a process/procedure is risky, do it a lot

• Practice makes perfect
• “Small Batches” improves quality and morale

3. Don’t punish people for outages
• Focus on accountability and take responsibility

?

Home Life

Tom Limoncelli, SRE
StackExchange.com

the-cloud-book.com
@YesThatTom

Fail Better!
Radical ideas from The Practice
of Cloud System Administration

www.informit.com/TPOSA
Discount code TPOSA35

Very Reasonable

Q&A

