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About me: Matt Schuetze 

 Product Management Director 

at Azul Systems 

 Translate Voice of Customer 

into Zing and Zulu 

requirements and work items 

 Sing the praises of Azul efforts 

through product launches 

 Azul alternate on JCP exec 

committee, co-lead Detroit 

Java User Group 

 Stand on the shoulders of 

giants and admit it 
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Philosophy and motivation 

What do we actually care about. And why? 
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Latency Behavior 

 Latency: The time it took one operation to 

happen 

 Each operation occurrence has its own 

latency 

 What we care about is how latency 

behaves 

 Behavior is a lot more than “the common 

case was X” 
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95%’ile 

The “We only want to show good things” chart 

We like to look at charts 
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What do you care about? 

 

 Do you : 

 Care about latency in your system? 

 Care about the worst case? 

 Care about the 99.99%’ile? 

 Only care about the fastest thing in the day? 

 Only care about the best 50% 

 Only need 90% of operations to meet 

requirements? 
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We like to rant about latency 
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99%‘ile is ~60 usec.  

(but mean is ~210usec)  

“outliers”, “averages” and other nonsense  

We nicknamed these 

spikes “hiccups” 
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Dispelling standard deviation 
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Mean = 0.06 msec 

Std. Deviation (𝞂) = 0.21msec 

99.999% = 38.66msec 

In a normal distribution, 

These are NOT normal distributions 

~184 σ (!!!) away from the mean 

the 99.999%’ile falls within 4.5 σ 

Dispelling standard deviation 
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Is the 99%’ile “rare”? 
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What are the chances of a single web page 

view experiencing the 99%’ile latency of: 

 

- A single search engine node? 

 

- A single Key/Value store node? 

 

- A single Database node? 

 

- A single CDN request? 

Cumulative probability… 

6/12/2015 20 



© Copyright Azul Systems 2015 6/12/2015 21 



© Copyright Azul Systems 2015 

Which HTTP response time  metric 

is more “representative” of user 

experience? 

The 95%’ile      or      the 99.9%’ile 
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Example: A typical user session involves 5 page loads, 

averaging 40 resources per page. 

 

- How many of our users will NOT experience something 

worse than the 95%’ile? 

 

Answer: ~0.003% 

 

- How many of our users will experience at least one 

response that is longer than the 99.9%’ile? 

 

Answer: ~18% 

Gauging user experience 
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Classic look at response time behavior 

Response time as a function of load 

source: IBM CICS server documentation, “understanding response times” 

Average? 

Max? 

Median? 

90%? 

99.9% 
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Hiccups are strongly multi-modal 

 They don’t look anything like a normal distribution 

 A complete shift from one mode/behavior to another 

 Mode A: “good”. 

 Mode B: “Somewhat bad” 

 Mode C: “terrible”, ... 

 The real world is not a gentle, smooth curve 

 Mode transitions are “phase changes” 
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Proven ways to deal with hiccups 

Actually characterizing latency 

Requirements 

Response Time 

Percentile plot 

line 
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Different throughputs, configurations, or other parameters on one graph 

Comparing Behavior 
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Shameless Bragging 
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Comparing Behaviors - Actual 
Latency sensitive messaging distribution application: HotSpot vs. Zing 
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Zing 

 A standards-compliant JVM for Linux/x86 servers 

 Eliminates Garbage Collection as a concern for 

enterprise applications in Java, Scala, or any JVM 

language 

 Very wide operating range: Used in both low latency and 

large scale enterprise application spaces 

 Decouples scale metrics from response time concerns 

Transaction rate, data set size, concurrent users, heap 

size, allocation rate, mutation rate, etc. 

 Leverages elastic memory for resilient operation 
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What is Zing good for? 

 If you have a server-based Java application 

And you are running on Linux 

And you use using more than ~300MB of 

memory, up to as high as 1TB memory, 

Then Zing will likely deliver superior behavior 

metrics  
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Where Zing shines 

 Low latency 

Eliminate behavior blips down to the sub-millisecond-units level 

 Machine-to-machine “stuff” 

Support higher *sustainable* throughput (one that meets SLAs) 

Messaging, queues, market data feeds, fraud detection, analytics  

 Human response times 

Eliminate user-annoying response time blips. Multi-second and 

even fraction-of-a-second blips will be completely gone. 

Support larger memory JVMs *if needed* (e.g. larger virtual user 

counts, or larger cache, in-memory state, or consolidating multiple 

instances) 

 “Large” data and in-memory analytics 

Make batch stuff “business real time”. Gain super-efficiencies. 

Cassandra, Spark, Solr, DataGrid, any large dataset in fast motion 
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An accidental conspiracy... 

The coordinated omission 
problem 
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The coordinated omission problem 

Common load testing example: 

– each “client” issues requests at a certain rate 

– measure/log response time for each request 

So what’s wrong with that? 

– works only if ALL responses fit within interval 

– implicit “automatic back off” coordination 

Begin audience participation exercise now… 
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It is MUCH more common than you 

may think... 

Is coordinated omission rare? 
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Before 

Correction 

After 

Correcting 

for 

Omission 

JMeter makes this mistake...  
And so do other tools! 
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Before 
Correction 

After 
Correction 

Wrong 

by 7x 

Real World Coordinated Omission effects 
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Uncorrected Data 

Real World Coordinated Omission effects 
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Uncorrected Data 

Corrected for 

Coordinated 

Omission 

Real World Coordinated Omission effects 
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A ~2500x 

difference in 

reported 

percentile levels 

for the problem 

that Zing 

eliminates 
Zing 

“other” JVM 

Real World Coordinated Omission effects 
Why I care 
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How “real” people react  
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Suggestions 

 Whatever your measurement technique is, test it. 

 Run your measurement method against artificial systems 

that create hypothetical pauses scenarios. See if your 

reported results agree with how you would describe that 

system behavior 

 Don’t waste time analyzing until you establish sanity 

 Don’t ever use or derive from standard deviation  

 Always measure Max time. Consider what it means...    

 Be suspicious. 

 Measure %‘iles. Lots of them. 
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HdrHistogram 
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Then you need both good dynamic range and good resolution 

HdrHistogram 

If you want to be able to produce charts like this... 
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Shape of Constant latency 

10K fixed line latency 
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Shape of Gaussian latency 

10K fixed line latency with added 

Gaussian noise (std dev. = 5K) 
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Shape of Random latency 

10K fixed line latency with added 

Gaussian (std dev. = 5K) vs. random (+5K) 
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Shape of Stalling latency 

10K fixed base, stall magnitude of 50K 

stall likelihood = 0.00005 (interval = 100) 
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Shape of Queuing latency 

10K fixed base, occasional bursts of 500 msgs 

handling time = 100, burst likelihood = 0.00005 
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Shape of Multi Modal latency 

10K mode0    70K mode1 (likelihood 0.01) 

180K mode2 (likelihood 0.00001) 
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And this what the real(?) world 

sometimes looks like… 
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Real world “deductive reasoning” 
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http://www.jhiccup.org 
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jHiccup 
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Discontinuity in Java execution 
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Examples 
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Oracle HotSpot ParallelGC Oracle HotSpot G1 

1GB live set in 8GB heap, same app, same HotSpot, different GC 
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Oracle HotSpot CMS Zing Pauseless GC 

1GB live set in 8GB heap, same app, different JVM/GC 
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Oracle HotSpot CMS Zing Pauseless GC 

1GB live set in 8GB heap, same app, different JVM/GC- drawn to scale 
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Zing 

Low latency trading application 

Oracle HotSpot (pure NewGen) Zing Pauseless GC 
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Oracle HotSpot (pure newgen) Zing Oracle HotSpot (pure newgen) 

Low latency trading application 

Oracle HotSpot (pure NewGen) Zing Pauseless GC 

6/12/2015 68 



© Copyright Azul Systems 2015 

Oracle HotSpot (pure newgen) Zing 

Low latency trading application – drawn to scale 

Oracle HotSpot (pure NewGen) Zing Pauseless GC 
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Q & A 
www.azul.com 

www.jhiccup.com 

www.hdrhistogram.com 

 

@schuetzematt 
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https://github.com/LatencyUtils/LatencyUtils

