
© Copyright Azul Systems 2015

© Copyright Azul Systems 2015

@azulsystems

How NOT to
Measure Latency

Matt Schuetze

Product Management Director, Azul Systems

6/12/2015 1

QCon NY

Brooklyn, New York

mailto:@azulsystems
mailto:@azulsystems
http://www.azulsystems.com

© Copyright Azul Systems 2015

© Copyright Azul Systems 2015

@azulsystems

Understanding Latency and
Application Responsiveness

Matt Schuetze

Product Management Director, Azul Systems

6/12/2015 2

QCon NY

Brooklyn, New York

mailto:@azulsystems
mailto:@azulsystems
http://www.azulsystems.com

© Copyright Azul Systems 2015

© Copyright Azul Systems 2015

@azulsystems

The Oh $@%T! talk.

Matt Schuetze

Product Management Director, Azul Systems

6/12/2015 3

QCon NY

Brooklyn, New York

mailto:@azulsystems
mailto:@azulsystems
http://www.azulsystems.com

© Copyright Azul Systems 2015

About me: Matt Schuetze

 Product Management Director

at Azul Systems

 Translate Voice of Customer

into Zing and Zulu

requirements and work items

 Sing the praises of Azul efforts

through product launches

 Azul alternate on JCP exec

committee, co-lead Detroit

Java User Group

 Stand on the shoulders of

giants and admit it

6/12/2015 4

© Copyright Azul Systems 2015

Philosophy and motivation

What do we actually care about. And why?

6/12/2015 5

© Copyright Azul Systems 2015

Latency Behavior

 Latency: The time it took one operation to

happen

 Each operation occurrence has its own

latency

 What we care about is how latency

behaves

 Behavior is a lot more than “the common

case was X”

6/12/2015 6

© Copyright Azul Systems 2015 ©2013 Azul Systems, Inc.

95%’ile

The “We only want to show good things” chart

We like to look at charts

6/12/2015 7

© Copyright Azul Systems 2015

What do you care about?

 Do you :

 Care about latency in your system?

 Care about the worst case?

 Care about the 99.99%’ile?

 Only care about the fastest thing in the day?

 Only care about the best 50%

 Only need 90% of operations to meet

requirements?

6/12/2015 8

© Copyright Azul Systems 2015 ©2013 Azul Systems, Inc.

We like to rant about latency

6/12/2015 15

© Copyright Azul Systems 2015

99%‘ile is ~60 usec.

(but mean is ~210usec)

“outliers”, “averages” and other nonsense

We nicknamed these

spikes “hiccups”
6/12/2015 16

© Copyright Azul Systems 2015

Dispelling standard deviation

6/12/2015 17

© Copyright Azul Systems 2015

Mean = 0.06 msec

Std. Deviation (𝞂) = 0.21msec

99.999% = 38.66msec

In a normal distribution,

These are NOT normal distributions

~184 σ (!!!) away from the mean

the 99.999%’ile falls within 4.5 σ

Dispelling standard deviation

6/12/2015 18

© Copyright Azul Systems 2015

Is the 99%’ile “rare”?

6/12/2015 19

© Copyright Azul Systems 2015

What are the chances of a single web page

view experiencing the 99%’ile latency of:

- A single search engine node?

- A single Key/Value store node?

- A single Database node?

- A single CDN request?

Cumulative probability…

6/12/2015 20

© Copyright Azul Systems 2015 6/12/2015 21

© Copyright Azul Systems 2015

Which HTTP response time metric

is more “representative” of user

experience?

The 95%’ile or the 99.9%’ile

6/12/2015 22

© Copyright Azul Systems 2015

Example: A typical user session involves 5 page loads,

averaging 40 resources per page.

- How many of our users will NOT experience something

worse than the 95%’ile?

Answer: ~0.003%

- How many of our users will experience at least one

response that is longer than the 99.9%’ile?

Answer: ~18%

Gauging user experience

6/12/2015 23

© Copyright Azul Systems 2015

Classic look at response time behavior

Response time as a function of load

source: IBM CICS server documentation, “understanding response times”

Average?

Max?

Median?

90%?

99.9%

6/12/2015 24

© Copyright Azul Systems 2015

Hiccups are strongly multi-modal

 They don’t look anything like a normal distribution

 A complete shift from one mode/behavior to another

 Mode A: “good”.

 Mode B: “Somewhat bad”

 Mode C: “terrible”, ...

 The real world is not a gentle, smooth curve

 Mode transitions are “phase changes”

6/12/2015 25

© Copyright Azul Systems 2015

Proven ways to deal with hiccups

Actually characterizing latency

Requirements

Response Time

Percentile plot

line

6/12/2015 26

© Copyright Azul Systems 2015

Different throughputs, configurations, or other parameters on one graph

Comparing Behavior

6/12/2015 29

© Copyright Azul Systems 2015

Shameless Bragging

6/12/2015 30

© Copyright Azul Systems 2015

Comparing Behaviors - Actual
Latency sensitive messaging distribution application: HotSpot vs. Zing

6/12/2015 31

© Copyright Azul Systems 2015

Zing

 A standards-compliant JVM for Linux/x86 servers

 Eliminates Garbage Collection as a concern for

enterprise applications in Java, Scala, or any JVM

language

 Very wide operating range: Used in both low latency and

large scale enterprise application spaces

 Decouples scale metrics from response time concerns

Transaction rate, data set size, concurrent users, heap

size, allocation rate, mutation rate, etc.

 Leverages elastic memory for resilient operation

6/12/2015 32

© Copyright Azul Systems 2015

What is Zing good for?

 If you have a server-based Java application

And you are running on Linux

And you use using more than ~300MB of

memory, up to as high as 1TB memory,

Then Zing will likely deliver superior behavior

metrics

6/12/2015 33

© Copyright Azul Systems 2015

Where Zing shines

 Low latency

Eliminate behavior blips down to the sub-millisecond-units level

 Machine-to-machine “stuff”

Support higher *sustainable* throughput (one that meets SLAs)

Messaging, queues, market data feeds, fraud detection, analytics

 Human response times

Eliminate user-annoying response time blips. Multi-second and

even fraction-of-a-second blips will be completely gone.

Support larger memory JVMs *if needed* (e.g. larger virtual user

counts, or larger cache, in-memory state, or consolidating multiple

instances)

 “Large” data and in-memory analytics

Make batch stuff “business real time”. Gain super-efficiencies.

Cassandra, Spark, Solr, DataGrid, any large dataset in fast motion
6/12/2015 34

© Copyright Azul Systems 2015

An accidental conspiracy...

The coordinated omission
problem

6/12/2015 35

© Copyright Azul Systems 2015

The coordinated omission problem

Common load testing example:

– each “client” issues requests at a certain rate

– measure/log response time for each request

So what’s wrong with that?

– works only if ALL responses fit within interval

– implicit “automatic back off” coordination

Begin audience participation exercise now…

6/12/2015 36

© Copyright Azul Systems 2015

It is MUCH more common than you

may think...

Is coordinated omission rare?

6/12/2015 37

© Copyright Azul Systems 2015

Before

Correction

After

Correcting

for

Omission

JMeter makes this mistake...
And so do other tools!

6/12/2015 38

© Copyright Azul Systems 2015

Before
Correction

After
Correction

Wrong

by 7x

Real World Coordinated Omission effects

6/12/2015 39

© Copyright Azul Systems 2015

Uncorrected Data

Real World Coordinated Omission effects

6/12/2015 40

© Copyright Azul Systems 2015

Uncorrected Data

Corrected for

Coordinated

Omission

Real World Coordinated Omission effects

6/12/2015 41

© Copyright Azul Systems 2015

A ~2500x

difference in

reported

percentile levels

for the problem

that Zing

eliminates
Zing

“other” JVM

Real World Coordinated Omission effects
Why I care

6/12/2015 42

© Copyright Azul Systems 2015

How “real” people react

6/12/2015 43

© Copyright Azul Systems 2015

Suggestions

 Whatever your measurement technique is, test it.

 Run your measurement method against artificial systems

that create hypothetical pauses scenarios. See if your

reported results agree with how you would describe that

system behavior

 Don’t waste time analyzing until you establish sanity

 Don’t ever use or derive from standard deviation

 Always measure Max time. Consider what it means...

 Be suspicious.

 Measure %‘iles. Lots of them.

6/12/2015 44

© Copyright Azul Systems 2015

HdrHistogram

6/12/2015 45

© Copyright Azul Systems 2015

Then you need both good dynamic range and good resolution

HdrHistogram

If you want to be able to produce charts like this...

6/12/2015 46

© Copyright Azul Systems 2015 6/12/2015 48

© Copyright Azul Systems 2015 6/12/2015 49

© Copyright Azul Systems 2015

Shape of Constant latency

10K fixed line latency
6/12/2015 50

© Copyright Azul Systems 2015

Shape of Gaussian latency

10K fixed line latency with added

Gaussian noise (std dev. = 5K)
6/12/2015 51

© Copyright Azul Systems 2015

Shape of Random latency

10K fixed line latency with added

Gaussian (std dev. = 5K) vs. random (+5K)
6/12/2015 52

© Copyright Azul Systems 2015

Shape of Stalling latency

10K fixed base, stall magnitude of 50K

stall likelihood = 0.00005 (interval = 100)
6/12/2015 53

© Copyright Azul Systems 2015

Shape of Queuing latency

10K fixed base, occasional bursts of 500 msgs

handling time = 100, burst likelihood = 0.00005
6/12/2015 54

© Copyright Azul Systems 2015

Shape of Multi Modal latency

10K mode0 70K mode1 (likelihood 0.01)

180K mode2 (likelihood 0.00001)
6/12/2015 55

© Copyright Azul Systems 2015

And this what the real(?) world

sometimes looks like…

6/12/2015 56

© Copyright Azul Systems 2015

Real world “deductive reasoning”

6/12/2015 57

© Copyright Azul Systems 2015

http://www.jhiccup.org

6/12/2015 58

© Copyright Azul Systems 2015

jHiccup

6/12/2015 59

© Copyright Azul Systems 2015

Discontinuity in Java execution

6/12/2015 60

© Copyright Azul Systems 2015

Examples

6/12/2015 63

© Copyright Azul Systems 2015

Oracle HotSpot ParallelGC Oracle HotSpot G1

1GB live set in 8GB heap, same app, same HotSpot, different GC

6/12/2015 64

© Copyright Azul Systems 2015

Oracle HotSpot CMS Zing Pauseless GC

1GB live set in 8GB heap, same app, different JVM/GC

6/12/2015 65

© Copyright Azul Systems 2015

Oracle HotSpot CMS Zing Pauseless GC

1GB live set in 8GB heap, same app, different JVM/GC- drawn to scale

6/12/2015 66

© Copyright Azul Systems 2015

Zing

Low latency trading application

Oracle HotSpot (pure NewGen) Zing Pauseless GC

6/12/2015 67

© Copyright Azul Systems 2015

Oracle HotSpot (pure newgen) Zing Oracle HotSpot (pure newgen)

Low latency trading application

Oracle HotSpot (pure NewGen) Zing Pauseless GC

6/12/2015 68

© Copyright Azul Systems 2015

Oracle HotSpot (pure newgen) Zing

Low latency trading application – drawn to scale

Oracle HotSpot (pure NewGen) Zing Pauseless GC

6/12/2015 69

© Copyright Azul Systems 2015

Q & A
www.azul.com

www.jhiccup.com

www.hdrhistogram.com

@schuetzematt

6/12/2015 70

https://github.com/LatencyUtils/LatencyUtils

